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ABSTRACT
Many applications, including program optimizations, debugging

tools, and event loggers, rely on calling context to gain additional

insight about how a program behaves during execution. One com-

mon strategy for determining calling contexts is to use compiler

instrumentation at each function call site and return sites to encode

the call paths and store them in a designated area of memory. While

recent works have shown that this approach can generate precise

calling context encodings with low overhead, the encodings can

grow to hundreds or even thousands of bytes to encode a long call

path, for some applications. Such lengthy encodings increase the

costs associated with storing, detecting, and decoding call path

contexts, and can limit the effectiveness of this approach for many

usage scenarios.

This work introduces a new compiler-based strategy that signif-

icantly reduces the length of calling context encoding with little or

no impact on instrumentation costs for many applications. Rather

than update or store an entire word at each function call and re-

turn, our approach leverages static analysis and variable length

instrumentation to record each piece of the calling context using

only a small number of bits, in most cases. We implemented our

approach as an LLVM compiler pass, and compared it directly to

the state-of-the-art calling context encoding strategy (PCCE) using

a standard set of C/C++ applications from SPEC CPU
®
2017. Over-

all, our approach reduces the length of calling context encoding

from 4.3 words to 1.6 words on average (> 60% reduction), thereby

improving the efficiency of applications that frequently store or

query calling contexts.
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1 INTRODUCTION
Calling context (also known as call path or call stack context) is
the series of active function calls that lead to a particular program

location during execution. Many applications use calling context to

attain better understanding of program behavior. Indeed, the ability

to inspect call stack context is an essential part of a wide variety

of tools for debugging[4, 9, 12, 13, 17, 18, 24, 31], testing[6, 20, 33],

and analyzing [2, 11, 28, 29, 38, 41, 42] modern software.

In addition to these software diagnosis and development tools,

many applications collect and use calling contexts in production

systems to enhance security or help guide feedback-directed opti-

mizations (FDOs). For instance, some frameworks monitor calling

context at program system calls and raise an alert if they detect an

anomalous or illegitimate call path [16, 35]. Another approach uses

calling context to identify and elide redundant barriers in hot execu-

tion contexts, thereby increasing the scalability of multi-threaded

applications [10]. Several works [15, 21, 23, 32, 34] improve utiliza-

tion of processor caches or low-power or hybrid memory devices

by building upon the idea that data objects allocated from the same

calling context tend to be used for similar purposes and exhibit

similar access patterns. To be successful, all of these techniques

need to balance the overhead of collecting and detecting calling

context with its expected benefits.

There are a number of different strategies for querying and

examining calling context, each with their own advantages and

limitations. A simple approach is to compute the context on de-

mand by walking the stack upwards and recording an address

associated with each stack frame (e.g., using backtrace [30] or

libunwind [40]). While this approach is flexible and easy to im-

plement, it can be very expensive, especially for applications that

require precise contexts in deep call paths [32]. Another strategy is

to use call path profiling to build a detailed representation of the

dynamic call graph, such as a calling context tree [3]. While these
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structures are very useful for understanding dynamic program be-

havior, storing and updating them is often too expensive for online

applications. Some researchers have developed adaptive bursting

and/or sampling-based strategies to curtail these overheads, but

these techniques are imprecise and can still incur high costs during

the sampling period [14, 44].

An option with lower overhead is to use compiler instrumen-

tation at each function call/return to track and encode the calling

context in a small area of memory. Bond and McKinley used this ap-

proach to maintain the current calling context in a probabilistically

unique hash value stored as a single word [8]. While this strategy

has low instrumentation overhead and is very compact, the con-

texts it produces are not always distinct (i.e., there may be collisions

on the hash) and are not decodable. Bond et al. later extended this

approach to support call path decoding, but this extension requires

additional instrumentation for accurate decodings [7]. Each decod-

ing operation also entails an expensive search of a large space of

context values, and is only suitable for offline application.

Some other encoding strategies sacrifice compactness for accu-

rate and reliable decoding. Sumner et al. adapted the Ball-Larus

path profiling technique [5] to implement precise calling context

encoding (PCCE) [37]. Their approach employs static call graph

analysis to construct instrumentation that always generates unique

encodings for every possible calling context. This approach can en-

code all of the non-recursive call path contexts using only a single

4- or 8-byte word for most small and medium-sized applications.

To record recursive contexts, it pushes the current encoding onto

a runtime stack each time the application makes a recursive call.

While this approach works well in many cases, scaling it to larger

applications is not trivial, and it often generates lengthy encodings

for highly recursive call paths. More recently, some other works

have extended PCCE with more flexible encoding mechanisms for

applications with larger call graphs as well as dynamic and indirect

calls [27, 43]. However, these scalable approaches generate length-

ier encodings than PCCE, which can slow down context detection

and decoding.

Thiswork presentsValence (Variable length calling context encoding),
a novel instrumentation-based approach for efficient encoding of

program calling contexts. Valence generates precise and scalable

calling context encodings that are, on average, only 37% of the

size of encodings produced by prior techniques. The key insight

behind our approach is that it is often not necessary to update or

store an entire word to encode each part of the calling context. Our

approach uses static analysis of the relative position of nodes in

the call graph to annotate each edge with a small number of bits

that are sufficient to encode each potential calling context. Then,

rather than sum or hash these values into the same word or set of

words, the instrumentation appends them to a list of bits whenever

the application makes a function call, thereby producing a variable

length encoding.

Compared to current precise encoding techniques, our approach

requires similar storage to record acyclic (i.e., non-recursive) call

paths. However, we find that most long call paths are actually

composed of a series of relatively small recursive cycles. While

current techniques store the entire current context value for each

recursive cycle, Valence represents the entire cycle in only a few

bits, in most cases, allowing it to reduce the size of the context

encoding significantly. Furthermore, Valence scales naturally to

applications with larger call graphs and enables a more efficient

decoding scheme than prior approaches.

This work makes the following important contributions:

(1) We present Valence, a novel calling context encoding ap-

proach that uses variable length instrumentation to generate

precise and scalable encodings that are more compact and

decode more efficiently than previous techniques.

(2) We develop an LLVM [26] compiler pass that automatically

applies Valence instrumentation to application binaries. In-

strumented applications interface with a lightweight runtime

system that intercepts and queries the calling context during

execution.

(3) We evaluate Valence using C and C++ applications from

the standard SPEC CPU
®
2017 benchmark suite. Our ex-

periments show that Valence reduces the length of calling

context encoding by almost 90% in the best case, and over

60% (from 4.3 to 1.6 64-bit words), on average, with little or

no impact on instrumentation costs.

2 BACKGROUND
2.1 Precise Calling Context Encoding
For baseline comparison to our approach, we implement and employ

the current state-of-the-art technique for precise calling context

encoding (PCCE) [37].

Definitions. The call graph (CG) is formally defined as a pair

⟨N ,E⟩, where N is a set of nodes with each node representing a

single function, and E is a set of directed edges. Each edge e ∈ E is

a triple ⟨p,n, l⟩, where p,n ∈ N are a caller and callee nodes, and l
is a call site where p calls n. Indirect calls and virtual calls handling

is discussed in 4.

A calling context (CC) of an invocation of function f is defined

as a path in the CG from the root leading to the node representing

f . During execution, PCCE maintains the current calling context

in a value known as id .

Encoding Acyclic Contexts. The key concept of PCCE is that,

at a given node n, it is possible to compute the total number of

non-recursive calling contexts, denoted as numCC(n), statically.
Therefore, each of the calling contexts at node n can always be

uniquely encoded by a number in the range [0,numCC(n)). To
generate its instrumentation, PCCE first annotates each node n
with numCC(n), such that numCC(n) = ∑m

i=1 numCC(pi ) where pi
are them parents of n. Next, it iterates over the incoming edges

of each node in topological order. For each edge e = ⟨p,n, l⟩, it
computes a sum En(e), where En(e) is zero if e is the first incoming

edge to node n, and otherwise, En(e) = ∑
numCC(pj ), where pj are

the parents of the previous incoming edges to n. PCCE then inserts

instrumentation on e as follows: immediately before the call site l ,
add En(e) to id to record the call, and immediately after l , subtract
En(e) from id to restore id to its original value.

Consider the example in Figure 1, which is taken from [37].

The boxes next to each node show their numCC(n) values, while
the edge labels show the actual instrumentation for each call site.

For instance, since I ’s incoming edges, FI and GI , precede J I in a

topological traversal, the instrumentation value for call site J I =

2
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Figure 1: Encoding non-recursive calling context with PCCE.
The boxed number next to each node is numCC(n). The edge
label “+c”means “id += c” is added before the call site, and “id
-= c” immediately after. The superscripts on D distinguish
the two call sites from D to F .

numCC(F )+numCC(G) = 3+4 = 7. Thus, PCCE records a call from

J to I by adding 7 to id . For many call sites, such asAB, BD, and DF ,
it is not necessary to insert instrumentation because PCCE does

not update id (i.e., En(e) = 0) for exactly one incoming edge of each

node. Note that, while this approach does not generate a different

id for every program path, it does ensure that id uniquely encodes

the distinct calling contexts at each program node, as shown in the

table on the left in Figure 1.

Recursive Calling Contexts. For programs that use recursion,

PCCE encodes the acyclic sub-paths of each recursive cycle in

a runtime stack. When the application makes a recursive call, it

pushes the current acyclic context id as well as an identifier for the

recursive call site onto the stack, and then records the following

acyclic context in a new id value. To implement this approach,

PCCE inserts a second “dummy” root node in the call graph with

dummy outgoing edges to: a) the original root node, and b) any

node that is a target of a backward edge (i.e., recursive call) in

the original call graph. It then annotates the modified graph as

described above, instruments the (non-dummy) forward edges to

encode the acyclic contexts, and inserts code for each backward

edge to push and pop the current acyclic context before and after

the recursive call site.

Decoding PCCE Context. To decode context values, PCCE tra-

verses the call graph upwards (i.e., towards main) from a given node

m. At each step, subranges of [0,numCC(m)) uniquely identify the

next piece of the calling context. Specifically, decoding proceeds by

determining the subrange [En(ei ),En(ei+1)) to which the current

id belongs, where ei are the incoming edges to the query point,

visited in topological order. At each step, the decoder sets id to

id − En(ei ), where ei is the edge corresponding to the correct sub-

range. The algorithm terminates when it reaches the root of the call

graph. Consider the example of decoding the context from node I
in Figure 1. The context values 0 − 3 indicate that I must have been

called from FI , while values 4 − 6 correspond to a call fromGI , and
7 to a call from J I .

Recursive context decoding is straightforward: the algorithm

simply processes one acyclic sub-path of the recursive context at

a time, until all values on the stack are fully decoded. Additional

and more specific details about the decoding process are available

in [37].

2.2 PCCE Limitations and Drawbacks
While PCCE is typically much more efficient than naïve strategies

for tracking and querying the calling context, it still has some limita-

tions, including: 1) it is difficult to apply PCCE if the combinatorial

explosion of paths is so large that representing them exceeds the

range of a single word on the target machine (which is often the

case for many large and object-oriented applications, even on mod-

ern 64-bit architectures [43]), 2) it only encodes calling contexts

for static call graphs, and lacks facilities for dynamic libraries and

indirect calls, and 3) recursive calling contexts can grow to include

dozens, hundreds, or even thousands of words (see Figure 4 in Sec-

tion 6.1). Such lengthy encodings have high detection costs and add

significant pressure to processor caches.

Some later efforts partially addressed these limitations, but their

underlying encoding schemes still use the original PCCE technique.

For instance, Zeng et al. [43] developed an extension to PCCE

that flexibly supports larger and more complex call graphs. Their

approach, called DeltaPath, divides the call graph into separate

territories, and uses PCCE to encode calling context from different

territories as distinct values on a runtime stack. While this tech-

nique avoids the potential issue of integer overflow in the context

value, it requires additional storage to encode each territory. In-

deed, a straightforward implementation that uses separate words

for the territory and context values will generate encodings that

are at least twice as large as those of PCCE alone. Li et al. [27]

proposed to integrate PCCE with DACCE, a lightweight dynamic

binary instrumentation (DBI) runtime system that discovers the

call graph during execution. Their approach inserts PCCE instru-

mentation dynamically and re-encodes the calling context when

necessary, allowing it to support dynamic and indirect function

calls automatically.

Since our work focuses on the potential benefits of an alternative

context encoding scheme, we compare our approach directly to the

original PCCE technique using only static instrumentation. Our

encoding scheme scales naturally to large and object-oriented call

graphs, and is often much more compact than PCCE and DeltaPath,

especially for recursive contexts. While our current implementation

only supports static call graphs, its benefits could be extended to

applications with dynamic libraries and indirect function calls by

integrating it with the DACCE runtime.

3



3 VARIABLE LENGTH CALLING CONTEXT
ENCODING

We now present our approach for encoding application calling

context with variable length instrumentation, whichwe call Valence.

As in past work, Valence uses different strategies for recursive

and non-recursive calling contexts, which we describe in separate

subsections below. The following descriptions use definitions for

the call graph and calling context that are consistent with those

listed in Section 2.1.

3.1 Variable Length Instrumentation for
Acyclic Calling Context

Valence records the calling context as a list of variable-length bit

values, where each value on the list represents a single edge in

the call path. Previous techniques that use a sum or hash function

to encode the calling context can generate values that exceed the

range of a 32- or 64-bit integer for many real-world programs. In

these cases, performance degrades significantly since most modern

machines do not support native addition and subtraction opera-

tions on such large integer types. In contrast, our approach scales

naturally on any architecture that can manipulate a list of bits with

shift and logical operations.

To avoid lengthy calling contexts, Valence aims to use as few bits

as possible to record each step in the call path. Consider that, given

a function f with c potential callers, a value with only lд(c) bits is
sufficient to distinguish the immediate parents of f . For static call
graphs, the value c is easily computed as the number of incoming

edges to the node corresponding to f . Thus, a simple approach

would be to enumerate the incoming edges of each node and assign

each edge a unique value between 0 and c . Then, at each function

call (and return), the application could append (remove) lд(c) bits
containing the corresponding edge value to the end of a list that

represents the current calling context. Unfortunately, this approach

must also maintain a pointer to the end of the context list, which

increases its instrumentation costs.

Valence addresses this drawback for acyclic call graphs using
static analysis and annotation. Specifically, Valence annotates each

node with a level value. The level of each node refers to the maxi-

mum number of bits necessary to encode its potential calling con-

texts. Level annotations allow the encoding scheme to insert in-

formation about each (non-recursive) function call into a specific

range of bits, rather than append it to a list. Moreover, since the

length and position of each piece of the encoding is known stati-

cally, this approach is able to label many of the call graph edges

with a default value of zero and omit their instrumentation entirely.

Algorithm 1 presents pseudocode for encoding acyclic calling

context with Valence. Valence applies the function call instrumen-

tation in two separate passes over the call graph: the first pass,

shown in the annotate procedure, computes the level of each node

and creates bit codes for each edge, while the second pass, in the

instrument procedure, inserts instructions to encode the calling

context at each call site.

Each node may have incoming edges that originate at different

levels, as well as multiple incoming edges that originate from the

same level. To encode each function call, our approach uses a two-

layer encoding where: 1) the level code indicates the level of the

Algorithm 1 Encoding for Acyclic Call Graphs

1: procedure annotate(N ,E)
2: for each node n ∈ N in topological order do
3: levelCount ← 0

4: edдeCounts ←Map⟨Integer, Integer⟩()
5: n.lvCodes ←Map⟨Integer, BitList⟩()
6: n.c2lv ←Map⟨BitList, Integer⟩()
7: n.ccMap ←Map⟨BitList, Map⟨BitList, Edge⟩⟩()
8:

9: for each incoming edge e = ⟨p,n, l⟩ of n do
10: if p.level < n.lvCodes then:
11: n.lvCodes[p.level] ← bits(levelCount)
12: n.c2lv[n.lvCodes[p.level]] ← p.level
13: edдeCounts[p.level] ← 0

14: ecodes ←Map⟨BitList, Edge⟩()
15: n.ccMap[n.lvCodes[p.level]] ← ecodes
16: increment levelCount by 1

17:

18: e .code ←bits(edдeCounts[p.level])
19: increment edдeCounts[p.level] by 1

20: n.ccMap[n.lvCodes[p.level]][e .code] ← e

21:

22: n.maxLen ← 0

23: for each ⟨level ,numEdдes⟩ ∈ edдeCounts do
24: codeLen ← level+length(bits(numEdдes))
25: n.maxLen ←max(codeLen,n.maxLen)
26:

27: n.lvCodeLen ← length(bits(n.lvCodes .size()))
28: n.level ← n.maxLen + n.lvCodeLen
29:

30: procedure instrument(N ,E)
31: for each edge e = ⟨p,n, l⟩ ∈ E do
32: cc ← e .code · n.lvCodes[p.level]
33: if cc has any nonzero bits then
34: set id[p.level ,n.level) to cc before site l
35: reset id[p.level ,n.level) after site l

caller function, and 2) the edge code distinguishes incoming edges

from the same level. Lines 9-20 of the annotate procedure gener-
ate these codes for each edge. For each node n in the call graph,

the algorithm builds a structure (n.lvCodes) that maps the levels

of n’s parent nodes (p.level) to distinct level codes. Similarly, for

each incoming edge to n, it generates an edge code (e .code) that
distinguishes the edge from other edges with parent nodes of the

same level. To produce unique level and edge codes, the algorithm

maintains integer counts (i.e., levelCount and edдeCounts[p.level])
and converts the counts into distinct bit codes using the bits pro-

cedure.
1
The remainder of the annotate procedure (lines 22-29)

uses these codes and their values to calculate the maximum length

of the calling context encoding at node n, which is stored on the

node as n.level . Note that the other structures shown in annotate,
including n.c2lv , which maps a given level code to a specific level

value, and n.ccMap, which maps a pair of level and edge codes to a

1
Specifically, bits returns a compact list of bits encoding the integer value passed as

its argument.
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Figure 3: Encoding recursive calling context with Valence. The edge label “·v”
means “push v onto recID” is added immediately before the call site, and “pop v
from recID” immediately after. Italic blue edge labels update acycID, while bold
red edge labels update recID.

specific edge in the call graph, are useful for decoding, but are not

necessary for encoding calling contexts.

After annotation, the instrument procedure traverses the edges
in the call graph a second time to apply the Valence instrumentation

at each call site. Specifically, for each incoming edge of each node,

it concatenates the appropriate edge and level codes to create a

combined code cc . It then uses the level annotations of its source

and destination nodes to insert instrumentation that records cc into
the appropriate range of bits in the calling context id .

Consider again the example call graph from [37], now shown

in Figure 2. In this figure, the boxed numbers show the level of

each node, while the edge labels show the Valence instrumentation,

including the range of bits within id and the bit codes that are used

at each call site. The table on the left shows the calling context

encoding (as a list of bits) after traversing some example call paths.

Observe that the parents of node I have two distinct levels, 2 and 0,

which are assigned level codes 0 and 1, respectively. Since edges

FI and GI both originate from parents at level 2, Valence further

distinguishes them with different edge codes, resulting in combined

codes of ‘00’ and ‘10’ for these edges, respectively.
2

Similar to previous techniques, Valence is able to omit instru-

mentation for exactly one incoming edge of each node, when the

level and edge codes do not contain any nonzero bits. In some cases,

the encoding for an incoming edge may require fewer bits than

the levels of the source and destination nodes allow. For instance,

only one bit (just the level code) is necessary to distinguish edge J I ,
but the encoding scheme reserves four bits for its call site. In these

cases, the instrumentation pads the context codes with leading

zeros to ensure the encoding is available at the correct position.

Decoding Acyclic Calling Context. Algorithm 2 presents the

approach for decoding non-recursive calling contexts with Valence.

The decoding process starts from a query point in a given nodem,

2
The level code is always placed after the edge code (on the right, in this example) to

facilitate decoding.

Algorithm 2 Decoding for Acyclic Call Graphs

1: procedure decode(id,m)

2: cc ← “m”

3: while nodem , root do
4: lvHiдh ←m.level
5: lvLow ← (lvHiдh −m.lvCodeLen)
6: if m.lvCodeLen > 0 then
7: lvCode ← id[lvLow, lvHiдh)
8:

9: edдeHiдh ← lvLow
10: edдeLow ←m.c2lv[lvCode]
11: if edдeCodeLen > 0 then
12: edдeCode ← id[edдeLow, edдeHiдh)
13:

14: ⟨p,n, l⟩ ←m.ccMap[lvCode][edдeCode]
15: cc ← “pl ” · cc
16: m ← p

17: return cc

and proceeds upwards towards the root function. At each step, it

first decodes the level of the next function in the calling context

using call graph annotations to determine the range of indexes that

contain the current level code. Given the level code, it can then

determine the position and value of the edge code, and lookup the

actual edge corresponding to the codes using the ccMap structure

on the current nodem.

While decoding efficiency is not a primary concern for many

applications, it is important to note that this approach does have

some performance advantages compared to prior techniques. For

instance, each step in the PCCE decoding process compares the

context value to a set of ranges corresponding to the incoming

edges of the current node. In contrast, Valence uses more detailed

call graph annotations, including the ccMap structure on each node,
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Algorithm 3 Encoding for Recursive Call Graphs

1: procedure annotateRec(N ,E)
2: labelSCCs(N ,E)
3: labelCyclicEdges(N ,E)
4:

5: curEdдeCode ← 0

6: for each cyclic edge e ∈ E do
7: e .code ←bits(curEdдeCode)
8: recMap[e .code] ← e
9: increment curEdдeCode by 1

10: recCodeLen ←length(bits(curEdдeCode))
11:

12: (N ′,E ′) ← getAcyclicGraph(N ,E)
13: annotateAcyc(N ′,E ′)
14:

15: procedure instrumentRec(N ,E)
16: for each edge e = ⟨p,n, l⟩ ∈ E do
17: if e is a cyclic edge then
18: push e .code onto recID before site l
19: pop e .code from recID after site l
20: else
21: instrumentAcyc(e,acycID)

to determine the next edge in the calling context in constant time.

(Of course, the size of the static annotations grows with the number

of nodes and edges in the call graph.) Moreover, this approach

allows some other types of queries, such as whether a particular

edge was taken or not on the path to the current node, to complete

in constant time.

3.2 Encoding Recursive Calling Contexts
Static length structures are not sufficient for recursive calling con-

texts, which may include an arbitrary number of cycles in the call

path. To encode cyclic contexts, Valence distinguishes edges that

might be part of a recursive cycle by identifying and annotating the

strongly connected components in the call graph. This approach

allows Valence to encode potentially cyclic contexts into an un-
bounded stack structure, separate from the static length array that

is used for acyclic call paths.

Formally, a strongly connected component (SCC) of the graph

G = (N ,E) is a subgraph (N ′,E ′) where every node n ∈ N ′ is
reachable from every other node in N ′.3 Observe that any edge in

E that begins and ends in the same SCC must be part of a cycle. We

refer to such edges as cyclic edges, and call any SCC that contains

at least one cyclic edge a complex SCC.
Algorithm 3 presents pseudocode for instrumenting recursive

applications with Valence. Similar to the acyclic encoding, the al-

gorithm applies the instrumentation in two phases, shown in the

annotateRec and instrumentRec procedures, respectively. First,
annotateRec labels the SCCs in the original call graph

4
, and marks

the edges that begin and end within the same SCC as cyclic edges.

Next, in lines 5-10, it assigns unique context codes to each cyclic

edge, and builds the recMap structure to map each code back to

3
By this definition, an acyclic graph G = (N , E) contains exactly N SCCs.

4
Our current implementation of labelSCCs uses Tarjan’s algorithm [39].

Algorithm 4 Decoding for Recursive Call Graphs

1: procedure decodeRec(acycID, recID, recTop,m)

2: cc ← “m”

3: while nodem , root do
4: if recID is not empty then
5: recLow ← recTop − recCodeLen
6: code ← recID[recLow, recTop)
7: ⟨p,n, l⟩ ←m.recMap[code]
8: if n =m then
9: recTop ← recLow
10: else
11: ⟨p,n, l⟩ ← decodeAcyc(acycID,m)

12: else
13: ⟨p,n, l⟩ ← decodeAcyc(acycID,m)

14: cc ← “pl ” · cc
15: m ← p

16: return cc

its corresponding edge during decoding. Note that all cyclic edges

receive distinct context codes, even if they belong to different SCCs.

While this approach requires lengthier encodings than the alter-

native, it also allows Valence to distinguish edges from different

SCCs, which is important for correct decoding. The remainder of

annotateRec uses Algorithm 1 from the previous subsection to

annotate the remaining (non-cyclic) edges in the call graph.

The instrumentRec procedure is mostly similar to the approach

for instrumenting acyclic call graphs, but includes an additional

case to append the codes for each cyclic edge to an unbounded

stack (recID) rather than a static length array (acycID). The call
to instrumentAcyc corresponds to lines 32 - 35 in Algorithm 1,

where the first and second arguments are the instrumented edge e
and context value id , respectively.

Consider the recursive call graph in Figure 3, which contains two

complex SCCs, EFH and DGJ , with a total of seven cyclic edges.

In this example, Valence pushes only three (ceil(lд(7))) bits to the

recID on each function call corresponding to each cyclic edge. To

instrument the non-cyclic edges in this call graph, we apply the

acyclic instrumentation procedure (Algorithm 1) to the graph that

results from consolidating each complex SCC into a single node, as

shown in Figures 3(b) and 3(c).

Decoding Recursive Calling Contexts. Algorithm 4 presents

the approach for decoding calling contexts that might include recur-

sive call paths. Similar to the procedure for acyclic calling contexts,

the algorithm decodes the context one edge at a time, and uses

call graph annotations to determine the number of bits to read

from the context values. To decide whether to use the recursive

context stack recID or the acyclic value acycID, each step considers
whether recID is non-empty, and if so, whether the top edge in

the stack leads to the current nodem. If both conditions are met, it

decodes the next piece of the context from recID, and otherwise,

from acycID. The calls to decodeAcyc in Algorithm 4 correspond

to the inner part of the while loop (lines 4 − 15) in Algorithm 2.

Intuitively, the decoder always unwinds the recID, if possible,
and proceeds using the acycID otherwise. In most cases, only one
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of either recID or acycID will have a leading edge that ends at the

current node, but there are scenarios where both context values

appear to be valid options. For instance, consider when the applica-

tion corresponding to Figure 3 traverses the path AJD1FHEF , and
attempts to decode the calling context at node F . In this situation,

the code for the edge EF would be the top item of recID, while
the code for D1F would be the last part of acycID. In such cases,

unwinding the recID first is always correct because the alternative

option of following the acyclic context will never reach the current

node again (if it did, it would be encoded as cyclic context), and

there would never be an opportunity to decode the recID.

3.3 Hybrid Calling Context Encoding
While the acyclic encoding strategy of Valence is more scalable

and enables more efficient decoding than PCCE’s acyclic approach,

it also produces lengthier encodings in some cases. For instance,

in Figure 2, Valence uses four bits to encode the calling contexts

at node I while PCCE generates a maximum id of seven for the

same call graph (as shown in Figure 1), which could allow it to

encode all of the potential calling contexts at node I in only three

bits. To better understand the limits and potential of our approach,

we also developed a hybrid calling context encoding (HCCE) that

uses PCCE for the acyclic parts of the call graph and Valence for

the cyclic edges of each strongly connected component. In this way,

HCCE sacrifices scalability and decoding efficiency for potentially

more compact encodings than the original Valence.

4 IMPLEMENTATION DETAILS
We implemented each encoding strategy using a custom LLVM [26]

compiler pass as well as a small set of library routines written in

C++. To prepare each instrumented executable file, we first compile,

optimize, and link the application’s source code into a single call

graph composed of LLVM IR. Next, we employ a profile-driven

compiler pass [22] to remove the virtual and indirect calls from

the graph and replace them with a set of direct calls. We then

apply one of our custom passes to annotate the resulting call graph

with data and instructions that implement one of the encoding

algorithms described above. For example, the PCCE pass inserts

three instructions (e.g., load, add, store) on edges that add or subtract

an integer from the current id . Likewise, the Valence pass inserts
bit manipulation instructions on edges that set or reset bits in the

acyclic calling context.

To simplify the instrumentation of recursive call paths, our im-

plementation uses an external library routine to insert and remove

context values from an unbounded stack structure. Specifically, the

PCCE instrumentation invokes the external library on each back

edge to push or pop a word from the context stack. Since the Va-

lence strategy adds only a few bits at a time to the recID, it is not
necessary to invoke an external routine on every cyclic edge. In-

stead, our implementation represents the recID as a stack of words,

and maintains a count of the number of bits that have already been

added to the top word of the stack. When the application traverses

a cyclic edge, the instrumentation checks if appending the edge

code to the top word of recID will cause an overflow, and if so, it

invokes the library to push a new word onto the stack. Otherwise, it

simply shifts the bits in the top word of the recID and uses bitwise

operations to insert the code.

It is important to note that the implementation of Valence in-

volves engineering choices and tradeoffs that can impact its effi-

ciency. For instance, our current instrumentation does not attempt

to split edge codes across word boundaries, and thus, may leave

some bits unused at the end of some words. Another example is

that, in many cases, the acyclic calling context encoding will not

align with word boundaries, which will result in unused bits in the

last word of the acycID. In these cases, our implementation does

attempt to use this space to encode the first few edges of the recID.
Such choices can impact the compactness and instrumentation

overhead of Valence, especially for smaller applications.

5 EXPERIMENTAL SETUP
5.1 Benchmark Description
We evaluate each encoding approach using 14 applications from

the SPEC CPU
®
2017 [36] benchmark set. Although our LLVM-

based implementation supports the use of Fortran (through tools

such as the Flang [1] front end), our evaluation focuses on C/C++

applications, which tend to use recursion more frequently and

have larger and more complex call graphs. Specifically, our selected

benchmarks include all of the C and C++ applications from SPEC

CPU
®
2017, with the following exceptions: 1) we exclude perlbench

and blender due to their use of the setjmp/longjmp facilities for

exception handling
5
2) we exclude omnetpp because applying the

adopted indirect call promotion pass [22], described in Section 4,

fails due to a segmentation fault. Additionally, the acyclic call graph

for gcc contains too many calling contexts to encode with either

PCCE or HCCE on our 64-bit platform. For comparison purposes,

we chose to include results for PCCE and HCCE and simply allow

overflow in the acyclic calling context. Thus, the instrumentation

and detection results for PCCE and HCCE for gcc only provide a

conservative estimate of the actual costs of these approaches.

The first six columns in Table 1 list each of our selected bench-

marks along with information regarding the size and structure of

their static call graphs. Thus, the selected applications exhibit very

different call graph sizes and complexities. The smallest benchmark

includes less than 20 nodes, while the largest contains many thou-

sands of nodes and edges. Overall, 12 of the 14 benchmarks have

at least one recursive cycle, and for some benchmarks, such as gcc
and povray, a significant portion of the call graph edges are part of

a cycle.

5.2 Experimental Platform and Configuration
All of our experiments were run on a Dell OptiPlex 7020 desktop

machine with a 3.30GHz Intel
®
Core

TM
i5-4590 CPU. This machine

supports the standard x86_64 instruction set and has a 64-bit word

size. Its processor includes four compute cores with a shared 6MB

L3 cache, and is connected to 16GB of DDR3 1600MHz DRAM. We

5
PCCE supports setjmp and longjmp by saving a copy of the height of the context

stack and the current context identifier within the local memory of the function that

is active whenever setjmp is encountered. It then uses this information to restore the

context when the application returns with longjmp. We plan to support these facilities

with Valence using a similar mechanism, but have not yet completed this part of our

implementation.
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Table 1: Benchmark statistics. From left to right, the columns show: benchmarkname, # of CGnodes, # of CG edges, # of (simple
and complex) SCC’s, # of SCCs with at least one cyclic edge, # of edges that are part of a cycle, # of bits needed to encode acyclic
call graphs with each encoding approach (PCCE, Valence, and HCCE), average and maximum length of the calling context
without encoding (one word per edge), # of function calls made during the run (K=thousand, M=million, B=billion).

Benchmark

Call Graph Statistics Acyclic Encoding Bits Runtime Statistics

Nodes Edges SCCs

Complex Cyclic

PCCE Valence HCCE

Avg. CC Max. CC Func.

SCCs Edges Length Length Calls

gcc 19,011 131,388 17,182 459 28,330 214 148 66 23.11 2,581 54.2 B

mcf 32 126 32 1 1 6 7 6 8.39 29 20.1 B

cactuBSSN 1,048 22,820 1,040 12 67 28 55 29 16.96 61 8.75 M

namd 61 553 61 0 0 10 13 10 3.99 4 559 M

parest 1,315 15,080 1,234 46 200 25 42 25 25.60 49 585 B

povray 519 8,258 377 57 2,380 57 57 36 15.07 41 50.0 B

lbm 17 27 17 0 0 2 2 2 1.00 2 6.06 K

xalancbmk 4,055 22,848 3,700 181 1,566 42 87 40 16.69 83 18.1 B

x264 367 2,318 366 1 2 18 27 18 5.58 12 8.01 B

deepsjeng 87 573 87 3 12 15 21 15 19.12 61 38.2 B

imagick 915 18,864 807 40 524 64 113 49 7.01 17 24.1 B

leela 204 1,013 202 15 23 13 17 12 9.34 133 68.7 B

nab 79 730 79 10 25 13 16 13 11.30 18 926 M

xz 149 359 140 3 18 10 18 10 10.17 16 811 M

installed Red Hat Enterprise Linux v7.2, which includes Linux v.

3.10.0-327 as its default kernel.

We compiled and optimized each benchmark using the

LLVM [26] compiler toolchain (v. 4.0.1) with -O3. For each experi-

mental run, we execute one (single-threaded) copy of the SPECrate

(5xx) version of each benchmark on our otherwise idle machine.

Performance results report the mean average execution time of five

experimental runs relative to the default running time. To estimate

the degree of variability in our results, we also compute 95% confi-

dence intervals for the difference between the means of the default

and experimental runs [19], and display these intervals as error

bars on the appropriate graphs.

6 EVALUATION
6.1 Length of Calling Context Encoding
We first compare the length of the calling context encodings pro-

duced by PCCE, Valence, and HCCE. The “Acyclic Encoding Bits”

column of Table 1 shows the number of bits that each approach

uses to encode the acyclic calling contexts of each benchmark. The

“PCCE” column shows the maximum lд(numCC(n)) for all n in the

original call graph (without back edges). The “Valence” and “HCCE”

columns show the maximum number of bits that are necessary to

encode the acyclic call graph formed by consolidating each complex

SCC into a single node, using either the Valence or PCCE encoding

strategy. In other words, the last two columns show the maximum

length of the acycID for Valence and HCCE, respectively.

Thus, for most benchmarks, each strategy is able to encode

the entire acyclic calling context in less than a single word. By

comparing the “Valence” and “HCCE” columns, we can see that

acyclic PCCE is often more compact than acyclic Valence over the

same call graph. However, the difference is only 8 bits, on average,

and does not actually require the use of an additional word in most

cases. By sacrificing this small amount of compactness, Valence

enables scalable encoding and more efficient decoding.

Next, we examine the length of the dynamic calling context

encodings generated by each approach. For these experiments, we

recorded the length of the calling context encoding (in words) at

each function call, and store a count of each length in a histogram

that is held in memory throughout the entire run. The line graphs

in Figure 4 show the counts for each calling context length for 12 of

our 14 benchmarks. We omit namd and lbm, which do not contain

any recursive calls and use only a single word for calling context

encoding with all three strategies. Note that the range of the x
and y axes are different for each subgraph, and the counts on each

y-axis are plotted using a log scale. Additionally, we used these

histograms to calculate the average length of the calling context

encoding at each function call, and plot these results in Figure 5. For

reference, the average and maximum word lengths of the calling

context without encoding (i.e., one word for each edge) are also

shown under “Runtime Statistics” in Table 1.

The figures show that Valence significantly reduces the length of

calling context encodings compared to PCCE, especially for deeper

call paths. For example, the mcf plot reveals that PCCE requires

multiple words for over 80% of its calling contexts (and up to 26

words in the worst case), but Valence uses only a single word to

encode the same set of calling contexts. Surprisingly, we found that

the worst case encoding length of gcc with PCCE is actually longer

than the maximum length without encoding. Due to the size of gcc’s
call graph, PCCE adds four words to the context encoding stack

for each recursive call, which results in very lengthy encodings for

highly recursive calling contexts.

In most cases, the Valence distribution is more similar to HCCE

than PCCE, which suggests that most of the improvement is due

to more efficient encoding of recursive calling contexts. However,

HCCE does outperform Valence for a few benchmarks, such as

cactuBSSN and imagick, due to its more compact (but less scalable)

acyclic encoding. Across all of the benchmarks, the PCCE encoding

is about 2.7x longer than Valence and more than 3.3x longer than

HCCE, on average.

6.2 Instrumentation Overhead
Figure 6 shows the execution time of each benchmark with PCCE,

Valence, or HCCE instrumentation relative to a default run with no
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Figure 4: Number of calling context encodings of a particular length (in words) with each encoding strategy. Each plot shows
a histogram that counts the lengths of the calling context encodings at each function call.
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calling context encoding. Overall, the instrumentation overhead is

relatively low for all three approaches: less than 10% for all bench-

marks except gcc, and between 2% to 3%, on average. While the

performance variations between the three approaches are typically

small, there are design choices that can impact the efficiency of

each approach. For instance, Valence and HCCE insert more instru-

mentation when the call graph has a large number of cyclic edges,

while PCCE typically moves more data on and off its context stack.
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Figure 6: Execution time overhead of call/return instrumen-
tation with PCCE, Valence, and HCCE.

The clearest discrepancy between the three approaches occurs with

gcc, which runs about 8% to 10% slower with Valence. However,

as noted in Section 5.1, the gcc call graph is too large for precise

encoding with either PCCE or HCCE, and so, the results shown here

underestimate the actual instrumentation costs of these techniques.
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6.3 Calling Context Detection Overhead
Lastly, let us consider how a more compact encoding impacts the

execution time of applications that read or detect calling context.

For this study, we configured our framework to compute the length

of the calling context encoding at each function call, similar to

the experiments in Section 6.1. However, rather than maintain a

histogram, the runtime simply reads and counts each word in the

current encoding and then discards it. This setup mimics an offline
usage scenario, such as a debugging or analysis tool, that reads

the calling context frequently, perhaps to enhance understanding,

debug, or build a profile of application behavior.

Figure 7(a) displays the execution time of running these ex-

periments with PCCE, Valence, and HCCE, relative to the default

execution time for each benchmark. Not surprisingly, querying the

context at every function call can incur considerable execution time

overheads, especially for benchmarks that make a large number of

calls. Some benchmarks, such as cactuBSSN and lbm, exhibit little or

no additional run time overhead due to the relatively low number

of function calls they make during the run. For benchmarks with

higher overheads, the encoding strategy has a clear and substantial

impact on the performance of these experiments. Overall, Valence

and HCCE are more efficient than PCCE, and reduce the execution

time overhead of these experiments from 2.1x to about 1.4x of the

default running time, on average.

To evaluate the impact of encoding length on execution time

more directly, we also used these results to estimate the average

cost of a single context query. For each benchmark with each en-

coding strategy, we isolated the total detection time by subtracting

the running time with encoding instrumentation alone from the

running time when querying the calling context at every call, and

then divided the result by the total number of context queries. For

this evaluation, we omit four benchmarks (specifically, cactuBSSN,
namd, lbm, and xz) that make relatively few function calls, and thus,

exhibit no significant difference between the running times of the

instrumentation-only and context detection experiments.

Figure 7(b) shows the average time cost (in ns) of each calling

context query for each benchmark with each encoding strategy. The

results indicate a strong correlation between the average length

of the context encoding (in Figure 5) and the average run time

cost of querying the context. For instance, while Figure 7(a) shows

that nab runs only about 10% slower with PCCE, the results in

Figure 7(b) show that the cost for each context query is several

times higher for PCCE than either HCCE or Valence due to a much

lengthier encoding. Overall, Valence and HCCE reduce the execu-

tion time overhead of querying the calling context by more than

70% compared to PCCE, on average, with these benchmarks.

7 FUTUREWORK
As we take this work forward, our primary goal is to integrate

Valence with other compilers, optimizers, debuggers, and analy-

sis tools in order to deliver its benefits to a broad range of real

and large scale computing software. In the immediate future, we

will apply Valence with FDOs, such as [10] and [32], where the

overhead of current context detection techniques can diminish or

negate the effectiveness of the optimization. Additionally, while Va-

lence instrumentation costs are relatively low on average, we found

that some applications incur slowdowns of more than 20% due to

instrumentation alone. Hence, we plan to investigate the use of

architectural support for collecting and encoding calling contexts.

For example, modern Intel
®
processors support automated call

stack tracking through the use of last branch records (LBRs) [25].

However, these facilities have a limited stack depth (currently, 16

or 32) and require two words for each record on the stack. We plan

to examine piecewise use of LBRs to mitigate the depth limitation,

and to explore mapping between LBR traces and Valence encoding

for efficient instrumentation.

8 CONCLUSION
Many applications generate or rely on calling context information

for code profiling, debugging, optimization, and for several other

apposite uses of dynamic feedback based adaptation. This work

presents Valence, a novel, compiler-based strategy that uses vari-

able length instrumentation to encode program calling contexts

efficiently. We have implemented Valence as an LLVM compiler

pass, and evaluated it against the state-of-the-art technique for pre-

cise calling context encoding (PCCE). Overall, Valence reduces the

length of encoding by over 62%, on average, across a standard set of

10



C/C++ benchmark applications, with negligible impact on instru-

mentation costs; and therefore, it significantly reduces overheads

associated with querying the calling context during execution. Thus,

Valence has great potential to improve the efficiency of dynamic

optimizations and other applications contingent on calling context

feedback.
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