Thesis contributions

- APPy: Annotated Parallelism for Python on GPUs [CC24] Parallelize Python loops and tensor expressions on GPUs
- ReACT: Redundancy-Aware Code Generation for Tensor Expressions
 - [PACT22] Redundancy elimination when fusing sparse/dense tensor operators
- Intrepydd: Performance, Productivity, and Portability for Data Science Application Kernels
 - [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

Problem statement: desired input and output

Desired input: operator program in Python (can be sparse)

```
def sddmm(sp_A, B, C):
1
       return sp_A * (B @ C)
2
3
   def spmm_mm(sp_A, B, C):
4
5
       return sp_A @ (B @ C)
6
   def norm_row(sp_A):
7
8
       return sp_A / sum(sp_A, axis=1)
```

Desired output: fused CPU kernel with reduced redundant memory accesses and computations

130	#pragma omp parallel	
131	{	
132		
133	<pre>auto T = new double [D2_dimension]();</pre>	
134	<pre>int jT = 0;</pre>	
135	<pre>#pragma omp for schedule(static)</pre>	
136	<pre>for (int32_t i = 0; i < C1_dimension; i++) {</pre>	
137	<pre>for (int32_t k = 0; k < D1_dimension; k++) {</pre>	
138	<pre>int32_t kC = i * C2_dimension + k;</pre>	
139	jT = 0;	
140	<pre>for (int32_t jB = B2_pos[i]; jB < B2_pos[(i + 1)]; jB++) {</pre>	
141	<pre>int32_t j = B2_crd[jB];</pre>	
142	<pre>int32_t jD = k * D2_dimension + j;</pre>	
143	<pre>T[jT] += C_vals[kC] * D_vals[k * D2_dimension + j];</pre>	
144	jT++;	
145	}	
146	}	
147		
148	jT = 0;	
149	<pre>for (int32_t jB = B2_pos[i]; jB < B2_pos[(i + 1)]; jB++) {</pre>	
150	<pre>int32_t j = B2_crd[jB];</pre>	
151	A_vals[jB] += B_vals[jB] * T[jT];	
152	T[jT] = 0;	
153	jT++;	
154	}	
155	}	
156		Georgia
157	delete T;	Tech
158	}	

Limitations with State-of-the-art

• TACO

- A code generator for arbitrary sparse/dense tensor algebra expressions
- maximal fusion is implicit during code generation
- Limitations
 - Maximal fusion may introduce some types of redundant memory accesses and computations
 - Maximal fusion cannot properly fuse certain reduction expressions

Maximal fusion does not work because it requires the "/" operator to be distributive over a summation

Redundancy types identified

- **Type 1** (Reduction Redundancy): When multiple multiply-add operations are performed instead of multiple adds followed by a single multiply (distributive law).
- **Type 2** (Loop-Invariant Redundancy): When a loop invariant expression is introduced (could be invariant in a non-innermost loop) due to maximum fusion.
- **Type 3** (Load-Store Redundancy): When some values are stored and loaded in separate loops, and the loads/stores can be eliminated after fusion --- a classical benefit of loop fusion.
- Type 4 (Dead-Value Redundancy): When some values are computed but not used later on (e.g., when multiplying with 0s in a sparse tensor) --- another classical benefit of loop fusion.

(Type 1) Reduction redundancy

Input: c = b * sum(A, axis=1)

With redundancy (due to maximal fusion)

Without redundancy

- 1. for (int i = 0; i < NI; i++) {
- 2. **double** s = 0;
- 3. double bi = b[i];
- 4. for (int j = 0; j < NJ; j++) {
- 5. s += <mark>A[i,j] * bi</mark>;
- 6. ...
- 7. }
- 8. ...
- 9.}

- 1. for (int i = 0; i < NI; i++) {
- 2. double s = 0;
- 3. for (int j = 0; j < NJ; j++) {
- 4. s += <mark>A[i,j]</mark>;
- 5. ...
- 6. } 7. s = s * B[i];
- 7. <mark>5 5 1</mark> 8. ...
- 9. }

Reduced number of multiplications in the innermost loop!

(Type 2) Loop-Invariant redundancy

Input: A = (B + E) * (C @ D)

With redundancy (due to maximal fusion)

1. for (int i = 0; i < NI; i++)

- 2. for (int k = 0; k < NK; k++)
- 3. for (int j = 0; j < NJ; j++)
- 4. $A[i,j] += (B[i,j] + E[i,j]) * \setminus (C[i,k] * D[k,j]);$

Without redundancy

- 1. double* T = new double[NJ];
- 2. for (int i = 0; i < NI; i++) {
- 3. for (int j = 0; j < NJ; j++) {
- 4. T[j] = B[i,j] + E[i,j];
- 5.
- 6. for (int k = 0; k < NK; k++) {
- 7. for (int j = 0; j < NJ; j++) {
- 8. A[i,j] += T[j] * (C[i,k] * D[k,j]);
- 9.
- 10. }
- 11. }

(Type 3) Load-Store redundancy

Input: s = sum(A, axis=1); B = A / s[:, None]

With redundancy (due to no fusion)

- double* s = new double[NI];
- 2. // Operator 1
- **3**. for (int i = 0; i < NI; i++) {
- 4. s[i] = 0;
- 5. for (int j = 0; j < NJ; j++) {
- 6. s[i] += A[i,j];
- 7.
- 8.
- 9. // Operator 2
- **10**. for (int i = 0; i < NI; i++) {
- 11. for (int j = 0; j < NJ; j++) {
- 12. **B**[i,j] = A[i,j] / s[i];
- 13. }
- 14. }

A[i,j] and s[i] now have reduced reuse distance, which leads to better locality!

Georgia Tech

Without redundancy

// Operator 1 and 2 fused 1. 2. for (int i = 0; i < NI; i++) { 3. double s = 0;4. for (int j = 0; j < NJ; j++) { 5. s += A[i,j];6. } 7. for (int j = 0; j < NJ; j++) { 8. 9. B[i,j] = A[i,j] / s;10. } 11. }

(Type 4) Dead-Value redundancy

Input: B = where(A < 0, alpha * A, A)

With redundancy (due to no fusion)

- 1. // Operator 1
- 2. double* tmp = new double[NI];
- 3. for (int i = 0; i < NI; i++) {
- 4. tmp[i] = alpha * A[i];
- 5. } Not all values in array tmp are useful!
- 6. // Operator 2
- 7. for (int i = 0; i < NI; i++) {
- 8. if (A[i] < 0) {
- 9. B[i] = tmp[i];
- 10. }
- 11. else {
- 12. B[i] = A[i];
- 13. }
- 14. }

Without redundancy

- 1. // Operator 1 and 2 fused
- 2. for (int i = 0; i < NI; i++) {
- 3. if (A[i] < 0) {
- 4. B[i] = alpha * A[i];
- 5. }
- 6. else {
- 7. B[i] = A[i];
- 8. }
- 9.}

Redundancies eliminated by each approach

Redundancy type	ReACT (this work)	ТАСО	SciPy
Reduction (type 1)	Yes	No	Yes
Loop invariant (type 2)	Yes	No	Yes
Load store (type 3)	Yes	Partially	No
Dead value (type 4)	Yes	Yes	No

How is ReACT able to reduce these redundancies?

Transformation passes are redundancy-aware

Performance evaluation

- Test machine
 - 16-core Intel(R) Xeon(R) 2.20GHz CPU
 - OMP_NUM_THREADS is set to 16
- Kernels (all kernels have at least 2 operators)
 - SpMM-MM (sparse-dense matmul followed by dense matmul)
 - SDDMM/Masked MM (a dense matmul followed by a dense-sparse element-wise mul)
 - Sparse-softmax (row-wise softmax on a sparse matrix)
 - Expressed using basic operators such as exp, sum, divide etc
- Sparse matrices
 - A collection of real-world matrices from SuiteSparse
 - All sparse matrices are in CSR format
- Comparisons
 - ReACT (our approach)
 - TACO (SOTA compiler)
 - SciPy.sparse (SOTA library)

SpMM-MM results – 5.9x faster than TACO

2.00 Redundancy **TACO ReACT** ReACT types output output TACO 1.75 present SciPy Normalized Execution 1.25 -1.00 -0.75 -0.50 -Type 1 Yes No Type 2 Yes No Type 3 No No 0.25 0.00 Type 4 No No rnalo consph cant bestkil odpitys shipsect put opport as econ scircuit Input matrices

(b) GNN-kernel1 (NH=256, NJ=16)

Code time complexity is reduced from O(NNZ * NH * NJ) (TACO) to O(NI * NH * NJ) (ReACT)

"No" is good here!

43

SpMM-MM results – 5.7x faster than SciPy

(b) GNN-kernel1 (NH=256, NJ=16)

ReACT has better locality + more parallelism Note: SciPy uses only a single thread for its SpMM implementation

44

SDDMM results – 1.5x faster than TACO

Both the amount of memory accesses and computations are reduced by eliminating type 1 redundancy.

(a) SDDMM (NK=64)

SDDMM results – 57.3x faster than SciPy

Many redundant computations are saved by eliminating type 4 (dead value) redundancies

(a) SDDMM (NK=64)

Sparse-softmax results – 2.0x faster than TACO

Sparse-softmax results – 23.5x faster than SciPy

Example: SpMM-MM

- Sparse-dense matmul followed by dense-dense matmul
 - Commonly used in graph neural networks
- Original input expression (sparse matrices are in red, assuming CSR format)
 - Python: *A* = *B* @ *C* @ *D*
- Transformations
 - Step 1: convert into *index notation* statements (each statement contains one operator)
 - S_0 : $T_{ih} = B_{ik} @ C_{kh}$ (sparse-dense MM)
 - S_1 : $A_{ij} = T_{ih} @ D_{hj}$ (dense-dense MM)
 - *T_{ih}* is compiler-generated temporary variable
 - Step 2: create an *index tree* from the index notation statements
 - Next slide

Index tree of SpMM-MM

- Two operations => create two subtrees
 - $S_0: T_{ih} = \mathbf{B}_{ik} \otimes C_{kh}$
 - $S_1: A_{ij} = T_{ih} @ D_{hj}$

SpMM-MM index trees

Annotate each index node as "Dense" or "Sparse"

Index tree corresponding loop structure

SpMM-MM index trees: TACO (maximal fusion)

- Time: Bad, $O(NNZ_B * NH * NJ)$
 - Due to type 1 and 2 redundancies
- Intermediate space: Great, O(1)
- Locality: Great

SpMM-MM index trees: TACO (maximal fusion)

Generated code

- for (int i = 0; i < NI; i++) { 1. for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {</pre> 2. for (int h = 0; h < NH; h++) {</pre> 3. for (int j = 0; j < NJ; j++) { 4. 5. ... 6. // A[i, h] += B[i, k] * C[k, h] * D[h, j] 7. A[i, h] += B.vals[k] * C[B.cols[k], h] * D[h, j];8. ... 9. } 10. 11.
- 12. }

SpMM-MM index trees: ReACT (partial fusion)

- Time: Good, $O(NNZ_B * NH + NI * NH * NJ)$
 - Typically much smaller than $O(NNZ_B * NH * NJ)$
- Intermediate space: Good, O(NH)
 - After memory optimization
- Locality: Good

SpMM-MM index trees: ReACT (partial fusion)

Generated code

1. for (int i = 0; i < NI; i++) { 2. for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) { for (int h = 0; h < NH; h++) {</pre> 3. 4. ••• 5. // T[i, h] += B[i, k] * C[k, h] T[h] += B.vals[k] * C[B.cols[k], h];6. 7. ••• 8. 9. for (int h = 0; h < NH; h++) { 10. 11. for (int j = 0; j < NJ; j++) { 12. ... // A[i, h] += T[i, h] * D[h, j] 13. 14. A[i, h] += T[h] * D[h, j];15. ••• 16. 17. T[h] = 0; 18. }

19. }

56

ReACT summary

- We identify four common types of redundancies that can occur when generating code for a sequence of dense/sparse tensor operations
- We introduce ReACT, which consists of a set of redundancy-aware code generation techniques and can generate code with reduced redundancies
- Empirical evaluation on real-world applications such as SDDMM, GNN, Sparse-Softmax, and MTTKRP showed that our generated code with redundancy elimination resulted in 1.1× to orders-of-magnitude performance improvements relative to a state-of-the-art tensor algebra compiler (TACO) and library approaches such as scipy.sparse

