
• APPy: Annotated Parallelism for Python on GPUs

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators

• Intrepydd: Performance, Productivity, and Portability for Data Science Application
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

32

Thesis contributions

Problem statement: desired input and output

• Desired input: operator program in
Python (can be sparse)

• Desired output: fused CPU kernel with
reduced redundant memory accesses
and computations

33

• TACO
• A code generator for arbitrary sparse/dense tensor algebra expressions

• maximal fusion is implicit during code generation

• Limitations
• Maximal fusion may introduce some types of redundant memory accesses and computations

• Maximal fusion cannot properly fuse certain reduction expressions

Limitations with State-of-the-art

34
Maximal fusion does not work because

it requires the “/” operator to be distributive over a summation

Redundancy types identified

• Type 1 (Reduction Redundancy):
When multiple multiply-add
operations are performed instead of
multiple adds followed by a single
multiply (distributive law).

• Type 2 (Loop-Invariant Redundancy):
When a loop invariant expression is
introduced (could be invariant in a
non-innermost loop) due to maximum
fusion.

• Type 3 (Load-Store Redundancy):
When some values are stored and
loaded in separate loops, and the
loads/stores can be eliminated after
fusion --- a classical benefit of loop
fusion.

• Type 4 (Dead-Value Redundancy):
When some values are computed but
not used later on (e.g., when
multiplying with 0s in a sparse tensor)
--- another classical benefit of loop
fusion.

35

(Type 1) Reduction redundancy

36

1. for (int i = 0; i < NI; i++) {

2. double s = 0;

3. double bi = b[i];

4. for (int j = 0; j < NJ; j++) {

5. s += A[i,j] * bi;

6. ...

7. }

8. ...

9. }

1. for (int i = 0; i < NI; i++) {

2. double s = 0;

3. for (int j = 0; j < NJ; j++) {

4. s += A[i,j];

5. ...

6. }

7. s = s * B[i];

8. ...

9. }

Reduced number of multiplications in the innermost loop!

With redundancy (due to maximal fusion) Without redundancy

Input: c = b * sum(A, axis=1)

(Type 2) Loop-Invariant redundancy

37

1. for (int i = 0; i < NI; i++)

2. for (int k = 0; k < NK; k++)

3. for (int j = 0; j < NJ; j++)

4. A[i,j] += (B[i,j] + E[i,j]) * \ (C[i,k] * D[k,j]);

1. double* T = new double[NJ];

2. for (int i = 0; i < NI; i++) {

3. for (int j = 0; j < NJ; j++) {

4. T[j] = B[i,j] + E[i,j];

5. }

6. for (int k = 0; k < NK; k++) {

7. for (int j = 0; j < NJ; j++) {

8. A[i,j] += T[j] * (C[i,k] * D[k,j]);

9. }

10. }

11. }

B[i,j] + E[i,j] is no longer repeatedly calculated for different k

iterations!

Input: A = (B + E) * (C @ D)

With redundancy (due to maximal fusion) Without redundancy

(Type 3) Load-Store redundancy

38

1. double* s = new double[NI];

2. // Operator 1

3. for (int i = 0; i < NI; i++) {

4. s[i] = 0;

5. for (int j = 0; j < NJ; j++) {

6. s[i] += A[i,j];

7. }

8. }

9. // Operator 2

10. for (int i = 0; i < NI; i++) {

11. for (int j = 0; j < NJ; j++) {

12. B[i,j] = A[i,j] / s[i];

13. }

14. }

1. // Operator 1 and 2 fused

2. for (int i = 0; i < NI; i++) {

3. double s = 0;

4. for (int j = 0; j < NJ; j++) {

5. s += A[i,j];

6. }

7.

8. for (int j = 0; j < NJ; j++) {

9. B[i,j] = A[i,j] / s;

10. }

11. }

A[i,j] and s[i] now have reduced reuse distance, which leads

to better locality!

Input: s = sum(A, axis=1); B = A / s[:, None]

With redundancy (due to no fusion) Without redundancy

(Type 4) Dead-Value redundancy

39

1. // Operator 1

2. double* tmp = new double[NI];

3. for (int i = 0; i < NI; i++) {

4. tmp[i] = alpha * A[i];

5. }

6. // Operator 2

7. for (int i = 0; i < NI; i++) {

8. if (A[i] < 0) {

9. B[i] = tmp[i];

10. }

11. else {

12. B[i] = A[i];

13. }

14. }

1. // Operator 1 and 2 fused

2. for (int i = 0; i < NI; i++) {

3. if (A[i] < 0) {

4. B[i] = alpha * A[i];

5. }

6. else {

7. B[i] = A[i];

8. }

9. }

The use of tmp is now eliminated, which reduces

redundant computations and memory accesses!

Not all values in array tmp are useful!

Input: B = where(A < 0, alpha * A, A)

With redundancy (due to no fusion) Without redundancy

Redundancies eliminated by each approach

40

Redundancy type ReACT (this work) TACO SciPy

Reduction (type 1) Yes No Yes

Loop invariant (type 2) Yes No Yes

Load store (type 3) Yes Partially No

Dead value (type 4) Yes Yes No

How is ReACT able to reduce these redundancies?

41

High-level transformations

Convert to IR

Redundancy-Aware

fusion

…

Low-level transformations

C++ code generator

Sequence of

tensor operators
final IR

C++ code with

OpenMP pragmas

Memory optimization

Transformation passes are redundancy-aware

Reduces type 3 redundancy

Reduces type 1 and 2 redundancy

• Test machine
• 16-core Intel(R) Xeon(R) 2.20GHz CPU
• OMP_NUM_THREADS is set to 16

• Kernels (all kernels have at least 2 operators)
• SpMM-MM (sparse-dense matmul followed by dense matmul)
• SDDMM/Masked MM (a dense matmul followed by a dense-sparse element-wise mul)
• Sparse-softmax (row-wise softmax on a sparse matrix)

• Expressed using basic operators such as exp, sum, divide etc

• Sparse matrices
• A collection of real-world matrices from SuiteSparse
• All sparse matrices are in CSR format

• Comparisons
• ReACT (our approach)
• TACO (SOTA compiler)
• SciPy.sparse (SOTA library)

Performance evaluation

42

SpMM-MM results – 5.9x faster than TACO

Redundancy
types

present

TACO
output

ReACT
output

Type 1 Yes No

Type 2 Yes No

Type 3 No No

Type 4 No No

43

Code time complexity is reduced

from 𝑂 𝑁𝑁𝑍 ∗ 𝑁𝐻 ∗ 𝑁𝐽 (TACO)

to 𝑂(𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽) (ReACT)

“No” is good here!

SpMM-MM results – 5.7x faster than SciPy

Redundancy
types

present

SciPy ReACT
output

Type 1 No No

Type 2 No No

Type 3 No No

Type 4 Yes No

44

ReACT has better locality + more parallelism

Note: SciPy uses only a single thread for its SpMM

implementation

SDDMM results – 1.5x faster than TACO

Redundancy
types

present

TACO
output

ReACT
output

Type 1 Yes No

Type 2 No No

Type 3 No No

Type 4 No No

45

Both the amount of memory accesses and computations

are reduced by eliminating type 1 redundancy.

SciPy runs out of

memory here

SDDMM results – 57.3x faster than SciPy

Redundancy
types

present

SciPy ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 Yes No

46

Many redundant computations are saved by eliminating

type 4 (dead value) redundancies

SciPy runs out of

memory here

Sparse-softmax results – 2.0x faster than TACO

47

Redundancy
types

present

TACO
output

ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 No No

TACO cannot fuse it into one single

kernel while ReACT does, so ReACT has

better localityNote: an AMD Ryzen 9 3900X was used for this

experiment

Sparse-softmax results – 23.5x faster than SciPy

48

Redundancy
types

present

TACO
output

ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 No No

SciPy’s sparse kernels are not parallelized

The operations are also not fused
Note: an AMD Ryzen 9 3900X was used for this

experiment

• Sparse-dense matmul followed by dense-dense matmul
• Commonly used in graph neural networks

• Original input expression (sparse matrices are in red, assuming CSR format)
• Python: 𝐴 = 𝐵 @ 𝐶 @ 𝐷

• Transformations
• Step 1: convert into index notation statements (each statement contains one operator)

• 𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘 @ 𝐶𝑘ℎ (sparse-dense MM)

• 𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ @ 𝐷ℎ𝑗 (dense-dense MM)

• 𝑇𝑖ℎ is compiler-generated temporary variable

• Step 2: create an index tree from the index notation statements

• Next slide

49

Example: SpMM-MM

Index tree of SpMM-MM

• Two operations => create two subtrees
• 𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘 @ 𝐶𝑘ℎ

• 𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ @ 𝐷ℎ𝑗

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dependence edge50

Index node

Compute node

SpMM-MM index trees

• Annotate each index node as “Dense” or “Sparse”

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Dense

51

Index tree corresponding loop structure

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

52

Sparse iteration space

Dense dense iteration space

1. for (int i = 0; i < NI; i++) {

2. for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3. for (int h = 0; h < NH; h++) {

4. ...

5. // T[i, h] += B[i, k] * C[k, h]

6. T[i, h] += B.vals[k] * C[B.cols[k], h];

7. ...

8. }

9. }

10. }

SpMM-MM index trees: TACO (maximal fusion)

• Time: Bad, 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 ∗ 𝑁𝐽)
• Due to type 1 and 2 redundancies

• Intermediate space: Great, 𝑂(1)

• Locality: Great
𝑖

𝑘

ℎ

𝑗

Dense

Sparse

Dense

Dense

𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ𝐷ℎ𝑗

53

SpMM-MM index trees: TACO (maximal fusion)

𝑖

𝑘

ℎ

𝐴𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ𝐷ℎ𝑗

𝑗

Dense

Sparse

Dense

Dense

Generated code

54

1. for (int i = 0; i < NI; i++) {

2. for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3. for (int h = 0; h < NH; h++) {

4. for (int j = 0; j < NJ; j++) {

5. ...

6. // A[i, h] += B[i, k] * C[k, h] * D[h, j]

7. A[i, h] += B.vals[k] * C[B.cols[k], h] * D[h, j];

8. ...

9. }

10. }

11. }

12. }

SpMM-MM index trees: ReACT (partial fusion)

• Time: Good, 𝑂 𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 + 𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽
• Typically much smaller than 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 ∗ 𝑁𝐽)

• Intermediate space: Good, 𝑂(𝑁𝐻)
• After memory optimization

• Locality: Good
𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

55

SpMM-MM index trees: ReACT (partial fusion)

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Generated code

56

1. for (int i = 0; i < NI; i++) {

2. for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3. for (int h = 0; h < NH; h++) {

4. ...

5. // T[i, h] += B[i, k] * C[k, h]

6. T[h] += B.vals[k] * C[B.cols[k], h];

7. ...

8. }

9. }

10. for (int h = 0; h < NH; h++) {

11. for (int j = 0; j < NJ; j++) {

12. ...

13. // A[i, h] += T[i, h] * D[h, j]

14. A[i, h] += T[h] * D[h, j];

15. ...

16. }

17. T[h] = 0;

18. }

19. }

ReACT summary

• We identify four common types of redundancies that can occur when
generating code for a sequence of dense/sparse tensor operations

• We introduce ReACT, which consists of a set of redundancy-aware code
generation techniques and can generate code with reduced redundancies

• Empirical evaluation on real-world applications such as SDDMM, GNN,
Sparse-Softmax, and MTTKRP showed that our generated code with
redundancy elimination resulted in 1.1× to orders-of-magnitude
performance improvements relative to a state-of-the-art tensor algebra
compiler (TACO) and library approaches such as scipy.sparse

57

	Slide 1: High-level Compiler Optimizations for Python Programs
	Slide 2: Python is the most popular programming language today (according to the PyPL index)
	Slide 3: Python is also widely used in scientific computing and data science
	Slide 4: Python’s rich ecosystem for scientific computing
	Slide 5
	Slide 6
	Slide 7: Thesis statement
	Slide 8: Thesis contributions
	Slide 9: Thesis contributions
	Slide 10: Motivation for APPy
	Slide 11: Abstract machine model: a multi-vector processor
	Slide 12: APPy compiler directives
	Slide 13: Vector addition with APPy
	Slide 14: Utilize both layers of parallelism: parallel for + simd
	Slide 15: Utilize both layers of parallelism: parallel for + simd
	Slide 16: APPy allows you to use both loops and tensor expressions
	Slide 17: Code simplified with tensor expressions
	Slide 18: Tensor-Oriented model
	Slide 19: Matrix vector multiplication using tensor expressions
	Slide 20: Map an APPy worker to GPU execution
	Slide 21: Implementation
	Slide 22: A code generation example
	Slide 23: Performance evaluation
	Slide 24: Performance results
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Sparse matrix dense vector multiplication (SpMV)
	Slide 30: More results explanation
	Slide 31: APPy summary
	Slide 32: Thesis contributions
	Slide 33: Problem statement: desired input and output
	Slide 34: Limitations with State-of-the-art
	Slide 35: Redundancy types identified
	Slide 36: (Type 1) Reduction redundancy
	Slide 37: (Type 2) Loop-Invariant redundancy
	Slide 38: (Type 3) Load-Store redundancy
	Slide 39: (Type 4) Dead-Value redundancy
	Slide 40: Redundancies eliminated by each approach
	Slide 41: How is ReACT able to reduce these redundancies?
	Slide 42: Performance evaluation
	Slide 43: SpMM-MM results – 5.9x faster than TACO
	Slide 44: SpMM-MM results – 5.7x faster than SciPy
	Slide 45: SDDMM results – 1.5x faster than TACO
	Slide 46: SDDMM results – 57.3x faster than SciPy
	Slide 47: Sparse-softmax results – 2.0x faster than TACO
	Slide 48: Sparse-softmax results – 23.5x faster than SciPy
	Slide 49: Example: SpMM-MM
	Slide 50: Index tree of SpMM-MM
	Slide 51: SpMM-MM index trees
	Slide 52: Index tree corresponding loop structure
	Slide 53: SpMM-MM index trees: TACO (maximal fusion)
	Slide 54: SpMM-MM index trees: TACO (maximal fusion)
	Slide 55: SpMM-MM index trees: ReACT (partial fusion)
	Slide 56: SpMM-MM index trees: ReACT (partial fusion)
	Slide 57: ReACT summary
	Slide 58: Thesis contributions
	Slide 59: Problem statement: desired input and output
	Slide 60: Compilation Pipeline: From Intrepydd to C++
	Slide 61: Compilation Pipeline: From Intrepydd to C++
	Slide 62: Code Optimization
	Slide 63: Code Optimization: LICM
	Slide 64: Code Optimization: Sparse Operator Fusion
	Slide 65: Code Optimization: Dense Operator Fusion
	Slide 66: Experimental Methodology
	Slide 67: Intrepydd Sequential Performance
	Slide 68: Code Optimization
	Slide 69: Intrepydd summary
	Slide 70: Thank you!
	Slide 71
	Slide 72: APPy Backup
	Slide 73: More complicated examples
	Slide 74: A stencil kernel “heat_3d” using tensor expressions
	Slide 75: Utilize both layers of parallelism: parallel for + simd
	Slide 76: Sliced index notation (inspired by Einstein notation)
	Slide 77: Abstract machine model: a multi-vector processor
	Slide 78: Loop-Oriented model
	Slide 79: Loop-Oriented model
	Slide 80: More complicated examples
	Slide 81: More complicated examples
	Slide 82: More complicated examples
	Slide 83: Tensor expressions are inherently parallel
	Slide 84: Tensor Oriented Programming Model
	Slide 85: Tensor Oriented Programming Model
	Slide 86: Example workflow for vector addition
	Slide 87: “Loops + Slices”: a simple and flexible programming model
	Slide 88: “Loops + Slices”: two levels of parallelism
	Slide 89: Tensor Oriented Programming Model
	Slide 90: Performance improvement over DaCe by category
	Slide 91: DaCe code generation for go_fast
	Slide 92: APPy code generation for go_fast
	Slide 93: DaCe code generation for syrk
	Slide 94: APPy code generation for syrk
	Slide 95: Automatic compiler optimizations
	Slide 96: Loop fusion case study: gesummv
	Slide 97: The final APPy code after automatic fusion
	Slide 98: Loop fusion case study: floyd_warshall
	Slide 99: Loop tiling case study: covariance
	Slide 100: Loop tiling case study: covariance
	Slide 101: Loop tiling case study: floyd_warshall and gesummv
	Slide 102: Evaluation
	Slide 103: Programmability evaluation
	Slide 104: Typical stencil kernel: heat_3d
	Slide 105: Typical loop-based kernel: covariance
	Slide 106: Vanilla programming model alone
	Slide 107: Comparison of the two programming models
	Slide 108: Memory consistency model implementation
	Slide 109: Synchronization optimization
	Slide 110: Some constraints
	Slide 111: Storage implication
	Slide 112: Loop tiling case study: covariance
	Slide 113: ReACT backup
	Slide 114: How is ReACT able to reduce more redundancies?
	Slide 115: Sparse-softmax N=16384
	Slide 116: Redundancy-Aware fusion via index tree
	Slide 117: SpMM-MM index trees
	Slide 118: Index tree corresponding loop structure
	Slide 119: Redundancy-Aware fusion using index tree
	Slide 120: SpMM-MM index trees: no fusion
	Slide 121: Future work
	Slide 122: Intrepydd backup
	Slide 123: Code Optimization: Array Memory Recycling
	Slide 124: Code Optimization: Array Memory Recycling
	Slide 125: Code Optimization: Array Memory Recycling

