
• APPy: Annotated Parallelism for Python on GPUs 

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators 

• Intrepydd: Performance, Productivity, and Portability for Data Science Application 
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations 

32

Thesis contributions



Problem statement: desired input and output

• Desired input: operator program in 
Python (can be sparse)

• Desired output: fused CPU kernel with 
reduced redundant memory accesses 
and computations
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• TACO
• A code generator for arbitrary sparse/dense tensor algebra expressions

• maximal fusion is implicit during code generation

• Limitations
• Maximal fusion may introduce some types of redundant memory accesses and computations

• Maximal fusion cannot properly fuse certain reduction expressions

Limitations with State-of-the-art

34
Maximal fusion does not work because 

it requires the “/” operator to be distributive over a summation



Redundancy types identified

• Type 1 (Reduction Redundancy): 
When multiple multiply-add 
operations are performed instead of 
multiple adds followed by a single 
multiply (distributive law).

• Type 2 (Loop-Invariant Redundancy): 
When a loop invariant expression is 
introduced (could be invariant in a 
non-innermost loop) due to maximum 
fusion.

• Type 3 (Load-Store Redundancy): 
When some values are stored and 
loaded in separate loops, and the 
loads/stores can be eliminated after 
fusion --- a classical benefit of loop 
fusion.

• Type 4 (Dead-Value Redundancy): 
When some values are computed but 
not used later on (e.g., when 
multiplying with 0s in a sparse tensor) 
--- another classical benefit of loop 
fusion.
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(Type 1) Reduction redundancy
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1. for (int i = 0; i < NI; i++) {

2.   double s = 0;

3.   double bi = b[i];

4.   for (int j = 0; j < NJ; j++) {

5.     s += A[i,j] * bi;

6.     ...

7.   }

8.   ...

9. }  

1. for (int i = 0; i < NI; i++) {

2.   double s = 0;

3.   for (int j = 0; j < NJ; j++) {

4.     s += A[i,j];

5.     ...

6.   }

7. s = s * B[i];

8.   ...

9. }  

Reduced number of multiplications in the innermost loop!

With redundancy (due to maximal fusion) Without redundancy

Input: c = b * sum(A, axis=1)



(Type 2) Loop-Invariant redundancy
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1. for (int i = 0; i < NI; i++)

2.   for (int k = 0; k < NK; k++)

3.     for (int j = 0; j < NJ; j++)

4.       A[i,j] += (B[i,j] + E[i,j]) * \ (C[i,k] * D[k,j]);

1. double* T = new double[NJ];

2. for (int i = 0; i < NI; i++) {

3.   for (int j = 0; j < NJ; j++) {

4. T[j] = B[i,j] + E[i,j];

5.   }

6.   for (int k = 0; k < NK; k++) {

7.     for (int j = 0; j < NJ; j++) {

8.       A[i,j] += T[j] * (C[i,k] * D[k,j]);

9.     }

10.   }

11. }

B[i,j] + E[i,j] is no longer repeatedly calculated for different k 

iterations!

Input: A = (B + E) * (C @ D)

With redundancy (due to maximal fusion) Without redundancy



(Type 3) Load-Store redundancy
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1. double* s = new double[NI];

2. // Operator 1

3. for (int i = 0; i < NI; i++) {

4.   s[i] = 0;

5.   for (int j = 0; j < NJ; j++) {

6.     s[i] += A[i,j];

7.   }

8. }

9. // Operator 2

10. for (int i = 0; i < NI; i++) {  

11.   for (int j = 0; j < NJ; j++) {

12.     B[i,j] = A[i,j] / s[i];

13.   }

14. }

1. // Operator 1 and 2 fused

2. for (int i = 0; i < NI; i++) {

3.   double s = 0;

4.   for (int j = 0; j < NJ; j++) {

5.     s += A[i,j];

6.   }

7.   

8.   for (int j = 0; j < NJ; j++) {

9.     B[i,j] = A[i,j] / s;

10.   }

11. } 

A[i,j] and s[i] now have reduced reuse distance, which leads 

to better locality!

Input: s = sum(A, axis=1); B = A / s[:, None]

With redundancy (due to no fusion) Without redundancy



(Type 4) Dead-Value redundancy
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1. // Operator 1

2. double* tmp = new double[NI];

3. for (int i = 0; i < NI; i++) {

4. tmp[i] = alpha * A[i];

5. }

6. // Operator 2

7. for (int i = 0; i < NI; i++) {

8.   if (A[i] < 0) {

9. B[i] = tmp[i];

10.   }

11.   else {

12.     B[i] = A[i];

13.   }

14. } 

1. // Operator 1 and 2 fused

2. for (int i = 0; i < NI; i++) {

3.   if (A[i] < 0) {

4. B[i] = alpha * A[i];

5.   }

6.   else {

7.     B[i] = A[i];

8.   }

9. } 

The use of tmp is now eliminated, which reduces 

redundant computations and memory accesses!

Not all values in array tmp are useful!

Input: B = where(A < 0, alpha * A, A)

With redundancy (due to no fusion) Without redundancy



Redundancies eliminated by each approach
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Redundancy type ReACT (this work) TACO SciPy

Reduction (type 1) Yes No Yes

Loop invariant (type 2) Yes No Yes

Load store (type 3) Yes Partially No

Dead value (type 4) Yes Yes No



How is ReACT able to reduce these redundancies?
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High-level transformations

Convert to IR

Redundancy-Aware 

fusion

…

Low-level transformations

C++ code generator

Sequence of 

tensor operators
final IR

C++ code with

OpenMP pragmas

Memory optimization

Transformation passes are redundancy-aware

Reduces type 3 redundancy

Reduces type 1 and 2 redundancy



• Test machine
• 16-core Intel(R) Xeon(R) 2.20GHz CPU
• OMP_NUM_THREADS is set to 16

• Kernels (all kernels have at least 2 operators)
• SpMM-MM (sparse-dense matmul followed by dense matmul)
• SDDMM/Masked MM (a dense matmul followed by a dense-sparse element-wise mul)
• Sparse-softmax (row-wise softmax on a sparse matrix)

• Expressed using basic operators such as exp, sum, divide etc

• Sparse matrices
• A collection of real-world matrices from SuiteSparse
• All sparse matrices are in CSR format

• Comparisons
• ReACT (our approach)
• TACO (SOTA compiler)
• SciPy.sparse (SOTA library)

Performance evaluation
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SpMM-MM results – 5.9x faster than TACO 

Redundancy 
types 

present

TACO
output

ReACT
output

Type 1 Yes No

Type 2 Yes No

Type 3 No No

Type 4 No No
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Code time complexity is reduced 

from 𝑂 𝑁𝑁𝑍 ∗ 𝑁𝐻 ∗ 𝑁𝐽  (TACO)

to 𝑂(𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽) (ReACT)

“No” is good here!



SpMM-MM results – 5.7x faster than SciPy

Redundancy 
types 

present

SciPy ReACT
output

Type 1 No No

Type 2 No No

Type 3 No No

Type 4 Yes No
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ReACT has better locality + more parallelism

Note: SciPy uses only a single thread for its SpMM 

implementation  



SDDMM results – 1.5x faster than TACO 

Redundancy 
types 

present

TACO
output

ReACT
output

Type 1 Yes No

Type 2 No No

Type 3 No No

Type 4 No No
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Both the amount of memory accesses and computations 

are reduced by eliminating type 1 redundancy.

SciPy runs out of

memory here



SDDMM results – 57.3x faster than SciPy

Redundancy 
types 

present

SciPy ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 Yes No
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Many redundant computations are saved by eliminating 

type 4 (dead value) redundancies

SciPy runs out of

memory here



Sparse-softmax results – 2.0x faster than TACO
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Redundancy 
types 

present

TACO
output

ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 No No

TACO cannot fuse it into one single 

kernel while ReACT does, so ReACT has 

better localityNote: an AMD Ryzen 9 3900X was used for this 

experiment



Sparse-softmax results – 23.5x faster than SciPy
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Redundancy 
types 

present

TACO
output

ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 No No

SciPy’s sparse kernels are not parallelized

The operations are also not fused
Note: an AMD Ryzen 9 3900X was used for this 

experiment



• Sparse-dense matmul followed by dense-dense matmul
• Commonly used in graph neural networks

• Original input expression (sparse matrices are in red, assuming CSR format)
• Python: 𝐴 = 𝐵 @ 𝐶 @ 𝐷

• Transformations
• Step 1: convert into index notation statements (each statement contains one operator)

• 𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘 @ 𝐶𝑘ℎ (sparse-dense MM)

• 𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ @ 𝐷ℎ𝑗 (dense-dense MM)

• 𝑇𝑖ℎ is compiler-generated temporary variable

• Step 2: create an index tree from the index notation statements

• Next slide
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Example: SpMM-MM



Index tree of SpMM-MM

• Two operations => create two subtrees
• 𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘 @ 𝐶𝑘ℎ

• 𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ @ 𝐷ℎ𝑗

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dependence edge50

Index node

Compute node



SpMM-MM index trees

• Annotate each index node as “Dense” or “Sparse”

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Dense
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Index tree corresponding loop structure

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗
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Sparse iteration space

Dense dense iteration space

1. for (int i = 0; i < NI; i++) {

2.     for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3.         for (int h = 0; h < NH; h++) {

4.             ...

5.             // T[i, h] += B[i, k] * C[k, h]

6.             T[i, h] += B.vals[k] * C[B.cols[k], h];

7.             ...

8.         }

9.     }

10. }



SpMM-MM index trees: TACO (maximal fusion )

• Time: Bad, 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 ∗ 𝑁𝐽)
• Due to type 1 and 2 redundancies

• Intermediate space: Great, 𝑂(1)

• Locality: Great
𝑖

𝑘

ℎ

𝑗

Dense

Sparse

Dense

Dense

𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ𝐷ℎ𝑗
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SpMM-MM index trees: TACO (maximal fusion )

𝑖

𝑘

ℎ

𝐴𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ𝐷ℎ𝑗

𝑗

Dense

Sparse

Dense

Dense

Generated code
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1. for (int i = 0; i < NI; i++) {

2.     for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3.         for (int h = 0; h < NH; h++) {

4.             for (int j = 0; j < NJ; j++) {

5.                 ...

6.                 // A[i, h] += B[i, k] * C[k, h] * D[h, j]

7.                 A[i, h] += B.vals[k] * C[B.cols[k], h] * D[h, j];

8.                 ...

9.             }            

10.         }

11.     }

12. }



SpMM-MM index trees: ReACT (partial fusion)

• Time: Good, 𝑂 𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 + 𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽
• Typically much smaller than 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 ∗ 𝑁𝐽)

• Intermediate space: Good, 𝑂(𝑁𝐻) 
• After memory optimization

• Locality: Good
𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense
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SpMM-MM index trees: ReACT (partial fusion)

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Generated code
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1. for (int i = 0; i < NI; i++) {

2.     for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3.         for (int h = 0; h < NH; h++) {

4.             ...

5.             // T[i, h] += B[i, k] * C[k, h]

6.             T[h] += B.vals[k] * C[B.cols[k], h];

7.             ...

8.         }

9.     }

10.     for (int h = 0; h < NH; h++) {

11.         for (int j = 0; j < NJ; j++) {

12.             ...

13.             // A[i, h] += T[i, h] * D[h, j]

14.             A[i, h] += T[h] * D[h, j];

15.             ...

16.         }

17.         T[h] = 0;     

18.     }

19. }



ReACT summary

• We identify four common types of redundancies that can occur when 
generating code for a sequence of dense/sparse tensor operations

• We introduce ReACT, which consists of a set of redundancy-aware code 
generation techniques and can generate code with reduced redundancies

• Empirical evaluation on real-world applications such as SDDMM, GNN, 
Sparse-Softmax, and MTTKRP showed that our generated code with 
redundancy elimination resulted in 1.1× to orders-of-magnitude 
performance improvements relative to a state-of-the-art tensor algebra 
compiler (TACO) and library approaches such as scipy.sparse
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