
High-level Compiler
Optimizations for Python
Programs
Tong Zhou

Committee: Vivek Sarkar, Jun Shirako, Tushar Krishna, Santosh Pande, Rich Vuduc

Python is the most popular programming language today
(according to the PyPL index)

2

https://pypl.github.io/PYPL.html

"The PYPL PopularitY of Programming Language Index is created by analyzing how often language tutorials are searched on Google."

https://pypl.github.io/PYPL.html

Python is also widely used in scientific computing and data
science

3

https://towardsdatascience.com/which-programming-language-should-data-scientists-learn-first-aac4d3fd3038https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-

python-in-science?slide=32

Python’s rich ecosystem for scientific computing

4

https://speakerdeck.com/jakevdp/the-state-of-the-stack-scipy-2015-keynote

5

But, isn’t Python slow?

6

But, isn’t Python slow?

Python is great for HPC

with better compilers!

Compilers that are aware of high-level operator and loop semantics can
deliver improved performance for Python programs on CPUs and GPUs

relative to past work

7

Thesis statement

• APPy: Annotated Parallelism for Python on GPUs

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators

• Intrepydd: Performance, Productivity, and Portability for Data Science Application
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

8

Thesis contributions

• APPy: Annotated Parallelism for Python on GPUs

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators

• Intrepydd: Performance, Productivity, and Portability for Data Science Application
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

9

Thesis contributions

• Scientific Python programs can often benefit from using a GPU

• Two common approaches for GPU acceleration in Python
• Library-based accelerations (e.g. CuPy), but many programs cannot be expressed using pre-

defined operators alone

• Creating custom CUDA/OpenCL kernels is challenging and time-consuming to get
correctness and high performance

• Our solution (APPy)
• Users write regular sequential Python code + annotate with simple pragmas

• The compiler automatically generates GPU kernels from it

Motivation for APPy

10

CuPy CUDA APPy

Productivity High Low High

Generality Low Very high High

11

Abstract machine model: a multi-vector processor

memory

Support cross-lane reduction

Maximum vector length:

appy.MVL

MIMD

SIMD

Support atomic update to memory locations

APPy compiler directives

• Annotations for loops
• #pragma parallel for

• #pragma parallel for single

• #pragma simd

• Annotations for statements
• #pragma atomic

• Annotations for tensor expressions
• #pragma {dim}=>{properties}

12

• Difference from OpenMP codegen
• OpenMP directly exposes the parallelism

hierarchy of the GPUs and requires more
complicated pragmas to generate GPU
code

• OpenMP does not recognize and compile
tensor expressions

Vector addition with APPy

13

1. @appy.jit
2. def vector_add(a, b, c, N):
3. #pragma parallel for
4. for i in range(N):
5. c[i] = a[i] + b[i]

i = 0 i = 1 i = 2

Software

Hardware

(abstract)

N workers launched

Utilize both layers of parallelism: parallel for + simd

14

Performance boost!

1. @appy.jit
2. def vector_add(a, b, c, N):
3. #pragma parallel for
4. for i in range(N):
5. c[i] = a[i] + b[i]

1. @appy.jit
2. def vector_add(a, b, c, N):
3. #pragma parallel for simd
4. for i in range(N):
5. c[i] = a[i] + b[i]

N / MVL workers launchedN workers launched

Utilize both layers of parallelism: parallel for + simd

15

Performance boost!

1. @appy.jit
2. def _generated(a, b, c, N):
3. #pragma parallel for
4. for i in range(0, N, MVL):
5. c[i:i+MVL] = …

Compiler generated

strip-mined loop

1. @appy.jit
2. def vector_add(a, b, c, N):
3. #pragma parallel for
4. for i in range(N):
5. c[i] = a[i] + b[i]

1. @appy.jit
2. def vector_add(a, b, c, N):
3. #pragma parallel for simd
4. for i in range(N):
5. c[i] = a[i] + b[i]

N workers launched N / MVL workers launched

APPy allows you to use both loops and tensor expressions

16

Using loops is flexible, but sometimes it can be verbose …

Tensor operators can be more natural if applicable

Code simplified with tensor expressions

17
Productivity improvement: 15 lines to 7 lines! (Also more readable)

Use loop only Use loop + tensor expressions

The compiler automatically converts these tensor

expressions into loops with operator fusion

1. @appy.jit

2. def softmax_loop_oriented(a, b, M, N):

3. #pragma parallel for

4. for i in range(M):

5. m = float('-inf’)

6. #pragma simd

7. for j in range(N):

8. m = maximum(m, a[i,j])

9. s = 0.0

10. #pragma simd

11. for j in range(N):

12. s += exp(a[i,j] - m)

13. #pragma simd

14. for j in range(N):

15. b[i,j] = exp(a[i,j] - m) / s

1. @appy.jit(auto_simd=True)

2. def softmax_tensor_oriented(a, b, M, N):

3. #pragma parallel for

4. for i in range(M):

5. m = max(a[i,:N])

6. s = sum(exp(a[i,:N] - m))

7. b[i,:N] = exp(a[i,:N] - m) / s

• Allows operating directly on tensors of arbitrary size as a whole
• Tensor expressions need to be in the form of sliced index notation

• C[:M, :N] = A[:M, :N] + B[:M, :N]

• B[:M] = sum(A[:M, :N], axis=1)

• A[:M, :N] = B[:M, None] + C[None, :N]

• B[1:M-1, 1:N-1] = 0.2 * (A[1:M-1, 1:N-1] + A[1:M-1, :N-2] + A[1:M-1, 2:N] + …)

• Dimensions need to be annotated using syntax low:up=>prop1,prop2, …

• Supported properties
• Parallel, simd, reduction, le (small dimension optimization)

• More automatic compiler optimizations
• Operator fusion

• Synchronization reduction

18

Tensor-Oriented model

Matrix vector multiplication using tensor expressions

• Loop order is determined by the
order of the dimensions from left
to right in the pragma

• The last dimension is
automatically strip-mined with
option auto_simd=True

• The optimal value of appy.MVL is
automatically tuned from a list of
common choices

19

Compiler generated

1. @appy.jit(auto_simd=True)

2. def mv(alpha, A, x):

3. M, N = A.shape

4. #pragma :M=>parallel :N=>reduction(sum:y)

5. y[:M] = mv(alpha * A[:M, :N], x[:N])

1. @appy.jit

2. def mv_generated(alpha, A, x):

3. M, N = A.shape

4. #pragma parallel for

5. for _i0 in range(0, M, 1):

6. y[_i0] = 0.0

7. for _i1 in range(0, N, appy.MVL):

8. _v1 = appy.vidx(_i1, appy.MVL, N)

9. y[_i0] += sum(alpha * A[_i0, _v1] * x[_v1])

Map an APPy worker to GPU execution

• Mapping each worker to a thread block is more flexible, but their execution
models don’t match

• APPy worker: statements execute sequentially

• Thread block: multiple warps can execute asynchronously

• Solution: compiler automatically inserts thread synchronizations after memory
operations to handle cross-thread dependence

• Optimization 1: synchronizations are unnecessary if within loops generated from tensor
expressions due to their regular computations

• Optimization 2: if a tensor being written is never read in any other statements, then it cannot
have data dependence with any other memory reads

20

Implementation

• All transformation passes are Python AST based

21

High-level transformations

Insert synchronizations

Convert tensor

expressions to loops

…

Low-level transformations

Compile to Triton code

Input APPy

program

Lower-level

APPy program

Triton

GPU kernel

Host code

A code generation example

22

High-level transform

1. @appy.jit(auto_simd=True)

2. def mv(alpha, A, x):

3. M, N = A.shape

4. #pragma :M=>parallel :N=>reduction(sum:y)

5. y[:M] = mv(alpha * A[:M, :N], x[:N])

1. @appy.jit

2. def mv(alpha, A, x):

3. M, N = A.shape

4. #pragma parallel for

5. for _i0 in range(0, M, 1):

6. tmp = 0.0

7. for _i1 in range(0, N, appy.MVL):

8. _v1 = appy.vidx(_i1, appy.MVL, N)

9. tmp += sum(alpha * A[_i0, _v1] * x[_v1])

10. y[_i0] = tmp

1. @triton.jit

2. def _kernel(M, N, A, A_stride0, A_stride1, x, \

3. x_stride0, y, y_stride0, MVL: tl.constexpr):

4. _i0 = tl.program_id(0) * 1

5. tmp = 0.0

6. for _i1 in range(0, N, MVL):

7. tmp += tl.sum(

8. alpha * tl.load(

9. A + _i0*A_stride0 + \

10. _i1 + tl.arange(0, MVL),

11. mask=_i1 + tl.arange(0, MVL) < N

12.),

13. tl.load(

14. x + _i1 + tl.arange(0, MVL),

15. mask=_i1 + tl.arange(0, MVL) < N

16.)

17.)

18. tl.store(y + _i0, tmp)

def mv(alpha, A, x):

 M, N = A.shape

 MVL = 128; grid = (M,)

 _kernel[grid](M, N, A, A.stride(0), A.stride(1), \

 x, x.stride(0), y, y.stride(0), MVL)Gen host code

Gen device code

Performance evaluation

• CPU: Ryzen 7 5800X

• 8 cores

• Cache sizes

• L1: 32K, L2: 512K, L3: 32M

• GPU: RTX 3090

• 10496 cuda cores, 82 SMs

• Cache sizes

• L1: 128K, L2: 6M

• Benchmarking methodology

• Each benchmark is run 10 times and report median

• Each benchmark run is ~ 1 second

• Comparisons
• NumPy (CPU library), CuPy (GPU library)

• Numba (SOTA CPU compiler), JAX (SOTA JIT compiler
with GPU backend), DaCe-GPU (SOTA GPU compiler)

• 20 kernels
• azimint_naive

• cholesky
• covariance
• fdtd_2d
• floyd_warshall

• gemm
• gemver
• gesummv
• go_fast
• gramschmidt

• heat_3d
• jacobi_1d
• jacobi_2d
• softmax

• spmv
• symm
• syr2k
• syrk
• trisolv

• trmm

23

Performance results

24

• NumPy
• Rightmost column shows absolute runtime

• Other frameworks: speedups/slowdown relative to
NumPy

• Acknowledgment: visualization script from npbench (ETH)

• Up arrow indicates speedup (from light green to dark green)

• Down arrow indicates slowdown (from orange to red)

• Summary of Appy's performance (geometric means)
• 30x speedup over NumPy

• 8.3x speedup over Numba

• 30x speedup over CuPy

• 18.8x speedup over JAX (with JIT)

• 3.1x speedup over DaCe-GPU

This work

25

Faster than DaCe due to some

patterns are parallelized with APPy but

sequentialized by DaCe

26

Faster than DaCe due to small dimension

optimization in APPy (cached in registers)

27

Faster than DaCe due to APPy generates

fused code while DaCe does not

28

Now show a code example: spmv

1. @appy.jit

2. def spmv(A_row, A_col, A_val, x):

3. N = A_row.shape[0]

4. y = empty([N - 1], dtype=A_val.dtype)

5. #pragma parallel for

6. for i in range(N - 1):

7. y[i] = 0.0

8. #pragma simd

9. for j in range(A_row[i], A_row[1+i]):

10. cols = A_col[j]

11. y[i] += A_val[j] * x[cols]

12. return y

Sparse matrix dense vector multiplication (SpMV)

29

Dynamic loop bounds are fine with

#pragma simd

CuPy version

1. def spmv(A_row, A_col, A_val, x):

2. N = A_row.shape[0]

3. y = empty([N - 1], dtype=A_val.dtype)

4. for i in range(N - 1):

5. cols = A_col[A_row[i]:A_row[i + 1]]

6. vals = A_val[A_row[i]:A_row[i + 1]]

7. y[i] = dot(vals, x[cols])

8. return y

APPy version

10557x speedup! 1

1. Testing machine is a RTX 3090 GPU and the baseline NumPy runtime is ~0.3 seconds

More results explanation

• Why faster than JAX (with JIT)?
• Parallelizable loops are parallelized by APPy but sequentialized by JAX

• APPy fuses some operator sequence pattern that’s not fused by JAX

• Why faster than CuPy?
• Loop-based CuPy kernels run the loops sequentially in the Python interpreter while

APPy runs them in parallel in native code

• Operator-based CuPy kernels have memory inefficiency due to the need to materialize
intermediate results for a sequence of operators while APPy does operator fusion

• Why faster than NumPy/Numba?
• GPUs are known to be more efficient than CPUs for data parallel applications

30

APPy summary

• We present APPy, a Python-based programming model and compiler that
allows users to parallelize sequential Python code on GPUs using compiler
directives

• We present the design of a loop-oriented programming model and a tensor-
oriented programming model, and their implementations, including code
generation and automatic compiler optimizations

• We evaluate the performance of APPy using 20 kernels from scientific
computing and demonstrate significant speedup over CuPy (30× on
average), JAX (18.8× on average), and DaCe-GPU (3.1× on average)

31

• APPy: Annotated Parallelism for Python on GPUs

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators

• Intrepydd: Performance, Productivity, and Portability for Data Science Application
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

32

Thesis contributions

Problem statement: desired input and output

• Desired input: operator program in
Python (can be sparse)

• Desired output: fused CPU kernel with
reduced redundant memory accesses
and computations

33

• TACO
• A code generator for arbitrary sparse/dense tensor algebra expressions

• maximal fusion is implicit during code generation

• Limitations
• Maximal fusion may introduce some types of redundant memory accesses and computations

• Maximal fusion cannot properly fuse certain reduction expressions

Limitations with State-of-the-art

34
Maximal fusion does not work because

it requires the “/” operator to be distributive over a summation

Redundancy types identified

• Type 1 (Reduction Redundancy):
When multiple multiply-add
operations are performed instead of
multiple adds followed by a single
multiply (distributive law).

• Type 2 (Loop-Invariant Redundancy):
When a loop invariant expression is
introduced (could be invariant in a
non-innermost loop) due to maximum
fusion.

• Type 3 (Load-Store Redundancy):
When some values are stored and
loaded in separate loops, and the
loads/stores can be eliminated after
fusion --- a classical benefit of loop
fusion.

• Type 4 (Dead-Value Redundancy):
When some values are computed but
not used later on (e.g., when
multiplying with 0s in a sparse tensor)
--- another classical benefit of loop
fusion.

35

(Type 1) Reduction redundancy

36

1. for (int i = 0; i < NI; i++) {

2. double s = 0;

3. double bi = b[i];

4. for (int j = 0; j < NJ; j++) {

5. s += A[i,j] * bi;

6. ...

7. }

8. ...

9. }

1. for (int i = 0; i < NI; i++) {

2. double s = 0;

3. for (int j = 0; j < NJ; j++) {

4. s += A[i,j];

5. ...

6. }

7. s = s * B[i];

8. ...

9. }

Reduced number of multiplications in the innermost loop!

With redundancy (due to maximal fusion) Without redundancy

Input: c = b * sum(A, axis=1)

(Type 2) Loop-Invariant redundancy

37

1. for (int i = 0; i < NI; i++)

2. for (int k = 0; k < NK; k++)

3. for (int j = 0; j < NJ; j++)

4. A[i,j] += (B[i,j] + E[i,j]) * \ (C[i,k] * D[k,j]);

1. double* T = new double[NJ];

2. for (int i = 0; i < NI; i++) {

3. for (int j = 0; j < NJ; j++) {

4. T[j] = B[i,j] + E[i,j];

5. }

6. for (int k = 0; k < NK; k++) {

7. for (int j = 0; j < NJ; j++) {

8. A[i,j] += T[j] * (C[i,k] * D[k,j]);

9. }

10. }

11. }

B[i,j] + E[i,j] is no longer repeatedly calculated for different k

iterations!

Input: A = (B + E) * (C @ D)

With redundancy (due to maximal fusion) Without redundancy

(Type 3) Load-Store redundancy

38

1. double* s = new double[NI];

2. // Operator 1

3. for (int i = 0; i < NI; i++) {

4. s[i] = 0;

5. for (int j = 0; j < NJ; j++) {

6. s[i] += A[i,j];

7. }

8. }

9. // Operator 2

10. for (int i = 0; i < NI; i++) {

11. for (int j = 0; j < NJ; j++) {

12. B[i,j] = A[i,j] / s[i];

13. }

14. }

1. // Operator 1 and 2 fused

2. for (int i = 0; i < NI; i++) {

3. double s = 0;

4. for (int j = 0; j < NJ; j++) {

5. s += A[i,j];

6. }

7.

8. for (int j = 0; j < NJ; j++) {

9. B[i,j] = A[i,j] / s;

10. }

11. }

A[i,j] and s[i] now have reduced reuse distance, which leads

to better locality!

Input: s = sum(A, axis=1); B = A / s[:, None]

With redundancy (due to no fusion) Without redundancy

(Type 4) Dead-Value redundancy

39

1. // Operator 1

2. double* tmp = new double[NI];

3. for (int i = 0; i < NI; i++) {

4. tmp[i] = alpha * A[i];

5. }

6. // Operator 2

7. for (int i = 0; i < NI; i++) {

8. if (A[i] < 0) {

9. B[i] = tmp[i];

10. }

11. else {

12. B[i] = A[i];

13. }

14. }

1. // Operator 1 and 2 fused

2. for (int i = 0; i < NI; i++) {

3. if (A[i] < 0) {

4. B[i] = alpha * A[i];

5. }

6. else {

7. B[i] = A[i];

8. }

9. }

The use of tmp is now eliminated, which reduces

redundant computations and memory accesses!

Not all values in array tmp are useful!

Input: B = where(A < 0, alpha * A, A)

With redundancy (due to no fusion) Without redundancy

Redundancies eliminated by each approach

40

Redundancy type ReACT (this work) TACO SciPy

Reduction (type 1) Yes No Yes

Loop invariant (type 2) Yes No Yes

Load store (type 3) Yes Partially No

Dead value (type 4) Yes Yes No

How is ReACT able to reduce these redundancies?

41

High-level transformations

Convert to IR

Redundancy-Aware

fusion

…

Low-level transformations

C++ code generator

Sequence of

tensor operators
final IR

C++ code with

OpenMP pragmas

Memory optimization

Transformation passes are redundancy-aware

Reduces type 3 redundancy

Reduces type 1 and 2 redundancy

• Test machine
• 16-core Intel(R) Xeon(R) 2.20GHz CPU
• OMP_NUM_THREADS is set to 16

• Kernels (all kernels have at least 2 operators)
• SpMM-MM (sparse-dense matmul followed by dense matmul)
• SDDMM/Masked MM (a dense matmul followed by a dense-sparse element-wise mul)
• Sparse-softmax (row-wise softmax on a sparse matrix)

• Expressed using basic operators such as exp, sum, divide etc

• Sparse matrices
• A collection of real-world matrices from SuiteSparse
• All sparse matrices are in CSR format

• Comparisons
• ReACT (our approach)
• TACO (SOTA compiler)
• SciPy.sparse (SOTA library)

Performance evaluation

42

SpMM-MM results – 5.9x faster than TACO

Redundancy
types

present

TACO
output

ReACT
output

Type 1 Yes No

Type 2 Yes No

Type 3 No No

Type 4 No No

43

Code time complexity is reduced

from 𝑂 𝑁𝑁𝑍 ∗ 𝑁𝐻 ∗ 𝑁𝐽 (TACO)

to 𝑂(𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽) (ReACT)

“No” is good here!

SpMM-MM results – 5.7x faster than SciPy

Redundancy
types

present

SciPy ReACT
output

Type 1 No No

Type 2 No No

Type 3 No No

Type 4 Yes No

44

ReACT has better locality + more parallelism

Note: SciPy uses only a single thread for its SpMM

implementation

SDDMM results – 1.5x faster than TACO

Redundancy
types

present

TACO
output

ReACT
output

Type 1 Yes No

Type 2 No No

Type 3 No No

Type 4 No No

45

Both the amount of memory accesses and computations

are reduced by eliminating type 1 redundancy.

SciPy runs out of

memory here

SDDMM results – 57.3x faster than SciPy

Redundancy
types

present

SciPy ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 Yes No

46

Many redundant computations are saved by eliminating

type 4 (dead value) redundancies

SciPy runs out of

memory here

Sparse-softmax results – 2.0x faster than TACO

47

Redundancy
types

present

TACO
output

ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 No No

TACO cannot fuse it into one single

kernel while ReACT does, so ReACT has

better localityNote: an AMD Ryzen 9 3900X was used for this

experiment

Sparse-softmax results – 23.5x faster than SciPy

48

Redundancy
types

present

TACO
output

ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 No No

SciPy’s sparse kernels are not parallelized

The operations are also not fused
Note: an AMD Ryzen 9 3900X was used for this

experiment

• Sparse-dense matmul followed by dense-dense matmul
• Commonly used in graph neural networks

• Original input expression (sparse matrices are in red, assuming CSR format)
• Python: 𝐴 = 𝐵 @ 𝐶 @ 𝐷

• Transformations
• Step 1: convert into index notation statements (each statement contains one operator)

• 𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘 @ 𝐶𝑘ℎ (sparse-dense MM)

• 𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ @ 𝐷ℎ𝑗 (dense-dense MM)

• 𝑇𝑖ℎ is compiler-generated temporary variable

• Step 2: create an index tree from the index notation statements

• Next slide

49

Example: SpMM-MM

Index tree of SpMM-MM

• Two operations => create two subtrees
• 𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘 @ 𝐶𝑘ℎ

• 𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ @ 𝐷ℎ𝑗

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dependence edge50

Index node

Compute node

SpMM-MM index trees

• Annotate each index node as “Dense” or “Sparse”

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Dense

51

Index tree corresponding loop structure

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

52

Sparse iteration space

Dense dense iteration space

1. for (int i = 0; i < NI; i++) {

2. for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3. for (int h = 0; h < NH; h++) {

4. ...

5. // T[i, h] += B[i, k] * C[k, h]

6. T[i, h] += B.vals[k] * C[B.cols[k], h];

7. ...

8. }

9. }

10. }

SpMM-MM index trees: TACO (maximal fusion)

• Time: Bad, 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 ∗ 𝑁𝐽)
• Due to type 1 and 2 redundancies

• Intermediate space: Great, 𝑂(1)

• Locality: Great
𝑖

𝑘

ℎ

𝑗

Dense

Sparse

Dense

Dense

𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ𝐷ℎ𝑗

53

SpMM-MM index trees: TACO (maximal fusion)

𝑖

𝑘

ℎ

𝐴𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ𝐷ℎ𝑗

𝑗

Dense

Sparse

Dense

Dense

Generated code

54

1. for (int i = 0; i < NI; i++) {

2. for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3. for (int h = 0; h < NH; h++) {

4. for (int j = 0; j < NJ; j++) {

5. ...

6. // A[i, h] += B[i, k] * C[k, h] * D[h, j]

7. A[i, h] += B.vals[k] * C[B.cols[k], h] * D[h, j];

8. ...

9. }

10. }

11. }

12. }

SpMM-MM index trees: ReACT (partial fusion)

• Time: Good, 𝑂 𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 + 𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽
• Typically much smaller than 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 ∗ 𝑁𝐽)

• Intermediate space: Good, 𝑂(𝑁𝐻)
• After memory optimization

• Locality: Good
𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

55

SpMM-MM index trees: ReACT (partial fusion)

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Generated code

56

1. for (int i = 0; i < NI; i++) {

2. for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3. for (int h = 0; h < NH; h++) {

4. ...

5. // T[i, h] += B[i, k] * C[k, h]

6. T[h] += B.vals[k] * C[B.cols[k], h];

7. ...

8. }

9. }

10. for (int h = 0; h < NH; h++) {

11. for (int j = 0; j < NJ; j++) {

12. ...

13. // A[i, h] += T[i, h] * D[h, j]

14. A[i, h] += T[h] * D[h, j];

15. ...

16. }

17. T[h] = 0;

18. }

19. }

ReACT summary

• We identify four common types of redundancies that can occur when
generating code for a sequence of dense/sparse tensor operations

• We introduce ReACT, which consists of a set of redundancy-aware code
generation techniques and can generate code with reduced redundancies

• Empirical evaluation on real-world applications such as SDDMM, GNN,
Sparse-Softmax, and MTTKRP showed that our generated code with
redundancy elimination resulted in 1.1× to orders-of-magnitude
performance improvements relative to a state-of-the-art tensor algebra
compiler (TACO) and library approaches such as scipy.sparse

57

• APPy: Annotated Parallelism for Python on GPUs

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators

• Intrepydd: Performance, Productivity, and Portability for Data Science Application
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

58

Thesis contributions

Problem statement: desired input and output

• Desired input: whole kernel in Python
(control flow is fine)

• Desired output: C++ code

59

1. it = 0
2. while it < max_iter:
3. u = 1.0 / x
4. v = c * (1 / (K.T @ u))
5. x = ((1 / r) * K) @ v
6. it += 1

Compilation Pipeline: From Intrepydd to C++

1. def foo(xs: Array(double, 2)) -> double:
 ...

2. for i in range(shape(xs, 0)):
3. for j in range(shape(xs, 1)):
4. sum += xs[i, j]
5. ...

Intrepydd source code

60

Compilation Pipeline: From Intrepydd to C++

Intrepydd source code

1. Array<double>* foo(Array<double>* xs) {
2. ...
3. for (int i = 0; i < pydd::shape(xs, 0); i += 1) {
4. for (int j = 0; j < pydd::shape(xs, 1); j += 1) {
5. sum += xs.data()[i*pydd::shape(xs, 1)+j];
6. ...

Intrepydd compiler

Resulting C++ code

1. def foo(xs: Array(double, 2)) -> double:
 ...

2. for i in range(shape(xs, 0)):
3. for j in range(shape(xs, 1)):
4. sum += xs[i, j]
5. ...

61

• High-level Optimizations in AOT compilation

• Loop invariant code motion (LICM OPT)

• Dense & Sparse Array Operator Fusion (Array OPT)

• Array allocation and slicing optimization (Memory OPT)

Code Optimization

62

Code Optimization: LICM

1. it = 0
2. while it < max_iter:
3. u = 1.0 / x
4. v = c * (1 / (K.T @ u)) # SDDMM
5. x = ((1 / r) * K) @ v
6. it += 1

Intrepydd source code (Sinkhorn)

1. it = 0
2. # Hoisted loop-invariant expressions
3. tmp1 = K.T
4. tmp2 = (1 / r) * K
5. while it < max_iter:
6. u = 1.0 / x

7. v = empty_like(c)
8. # Fused loop iterating over non-zero elements
9. for row, col, val in c.nonzero_elements():
10. tmp3 = 0.0
11. for idx in range(shape(tmp1, 1)):
12. tmp3 += tmp1[row, idx] * u[idx, col]
13. tmp4 = val * (1 / tmp3)
14. spm_set_item(v, tmp4, row, col)

15. x = spmm_dense(tmp2, v)

16. it += 1

Transformed code

c: sparse

K, u: dense

63

Code Optimization: Sparse Operator Fusion

1. it = 0
2. while it < max_iter:
3. u = 1.0 / x
4. v = c * (1 / (K.T @ u)) # SDDMM
5. x = ((1 / r) * K) @ v
6. it += 1

Intrepydd source code (Sinkhorn)

1. it = 0
2. # Hoisted loop-invariant expressions
3. tmp1 = K.T
4. tmp2 = (1 / r) * K
5. while it < max_iter:
6. u = 1.0 / x
7. v = empty_like(c)
8. # Fused loop iterating over non-zero elements
9. for row, col, val in c.nonzero_elements():
10. tmp3 = 0.0
11. for idx in range(shape(tmp1, 1)):
12. tmp3 += tmp1[row, idx] * u[idx, col]
13. tmp4 = val * (1 / tmp3)
14. spm_set_item(v, tmp4, row, col)

15. x = spmm_dense(tmp2, v)

16. it += 1

c: sparse

K, u: dense

64

SDDMM: masked matmul

Transformed code

Code Optimization: Dense Operator Fusion

1. it = 0
2. while it < max_iter:
3. u = 1.0 / x
4. v = c * (1 / (K.T @ u)) # SDDMM
5. x = ((1 / r) * K) @ v
6. it += 1

Intrepydd source code (Sinkhorn)

1. it = 0
2. # Hoisted loop-invariant expressions
3. tmp1 = K.T
4. tmp2 = (1 / r) * K
5. while it < max_iter:
6. u = 1.0 / x
7. v = empty_like(c)
8. # Fused loop iterating over non-zero elements
9. for row, col, val in c.nonzero_elements():
10. tmp3 = 0.0
11. for idx in range(shape(tmp1, 1)):
12. tmp3 += tmp1[row, idx] * u[idx, col]
13. tmp4 = val * (1 / tmp3)
14. spm_set_item(v, tmp4, row, col)

15. x = spmm_dense(tmp2, v)

16. it += 1

Transformed code

c: sparse

K, u: dense

65

SDDMM: masked matmul

Experimental Methodology

Benchmark Applications

• A subset of Python based data analytics applications from a recent DARPA
program

• Mix of non-library call and library call dominated applications

Test machine

• Dual Intel Xeon Silver 4114 CPU @ 2.2GHz with 192GB of main memory and
hyperthreading disabled

Comparisons

• Baseline idiomatic Python 3.7.6

• Cython

• Numba

66

Intrepydd Sequential Performance

Intrepydd offers 20.7x speedup on average (geomean) over

baseline Python
67

• High-level Optimizations in AOT compilation

• Loop invariant code motion (LICM OPT)

• Dense & Sparse Array Operator Fusion (Array OPT)

• Array allocation and slicing optimization (Memory OPT)

• Impact on performance by each OPT

Code Optimization

68

Intrepydd summary

• We present Intrepydd, a Python-based programming system, which is
designed to enable data scientists to write application kernels with high
performance, productivity, and portability

• We implement a number of high-level compiler optimizations during the
compilation

• We evaluate the performance of Intrepydd using 6 data science kernels and
show significant single-core performance improvements of Intrepydd
relative to vanilla Python/NumPy (1.5× to 498.5×), Cython (1.5× to 47.5×)
and Numba (1.7× to 38.1×)

69

Thank you!

70

• APPy: Annotated Parallelism for Python on GPUs

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators

• Intrepydd: Performance, Productivity, and Portability for Data Science Application
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

APPy ReACT Intrepydd

Input Python programs Tensor DSL Python programs

Output Triton code for GPUs C++ code for CPUs C++ code for CPUs

Compilation JIT AOT AOT

Requires type annotation No Yes Yes

Requires compiler

directives

Yes No Only for pfor

Parallel reduction Yes via pragma No No

Operator fusion Yes Yes Yes

LICM No Yes Yes

Sparse redundancy

elimination

No Yes Yes

General sparse codegen No Yes No

Small tensor caching Yes via pragma No No

71

APPy Backup

72

More complicated examples

• Sparse matrix dense vector
multiplication

• Azimuthal integration, related to X-ray
images

73

Dynamic loop bounds are fine with

#pragma simd

Parallel reduction via atomic update

1.8x speedup over CuPy (operator only) 110830x speedup over CuPy (loop-based) 1

1. Testing machine is a RTX 3090 GPU and the baseline NumPy runtime is ~0.3 seconds

A stencil kernel “heat_3d” using tensor expressions

74

One kernel launch per

annotated tensor expression

Automatically append a simd

property to the last dimension

Utilize both layers of parallelism: parallel for + simd

75

Performance boost!

@appy.jit
def vector_add(a, b, c, N):
 #pragma parallel for
 for i in range(N):
 c[i] = a[i] + b[i]

@appy.jit
def vector_add(a, b, c, N):
 #pragma parallel for simd
 for i in range(N):
 c[i] = a[i] + b[i]

Sliced index notation (inspired by Einstein notation)

• Two steps
• Define index variables (dimension size)

• Create sliced index notations

• Examples (assume “M, N = A.shape”)
• Element-wise multiplication of A and B

• C[:M, :N] = A[:M, :N] + B[:M, :N]

• Row-wise summation of A

• B[:M] = sum(A[:M, :N], axis=1)

• Stencil pattern

• B[1:M-1, 1:N-1] = 0.2 * (A[1:M-1, 1:N-1] +
A[1:M-1, :N-2] + A[1:M-1, 2:N] + …)

• Broadcast

• A[:M, :N] = B[:M, None] + C[None, :N]

76

• Annotate each distinct dimension
(slice) with a list of properties

• :M=>parallel :N=>reduction(sum)
• Indicate to the :M dimension should be

processed in parallel and :N is a reduction
dimension

• 1:M-1=> parallel 1:N-1=>parallel
• Indicate both dimensions should be

processed in parallel

77

Abstract machine model: a multi-vector processor

memory

Loop-Oriented model

78

Higher performance can be achieved by

working with a block of data per iteration

Performance boost!

Loop-Oriented model

79

Higher performance can be achieved by

working with a block of data per iteration

Performance boost!

A built-in function that returns a “vector

of indices”, e.g. [i, i+1, i+2, …, i+BN-1]

More complicated examples

• Sparse matrix dense vector
multiplication

• Azimuthal integration, related to X-ray
images

80

spmv azimint_naive

More complicated examples

• Sparse matrix dense vector
multiplication

• Azimuthal integration, related to X-ray
images

81

spmv azimint_naive

Block size (Bj) must be a constant

More complicated examples

• Sparse matrix dense vector
multiplication

• Azimuthal integration, related to X-ray
images

82

spmv azimint_naive

Block size (Bj) must be a constant Indicates parallel reduction

Tensor expressions are inherently parallel

83

Tensor Oriented Programming Model

• Advantages
• More concise

• More automatic optimizations
• Automatic loop fusion

84

Two additions will be fused.

Tensor Oriented Programming Model

• Advantages
• More concise

• More automatic optimizations
• Automatic loop fusion

• Automatic loop tiling (a simple form)

85

:N will be automatically blocked,

and the optimal block size is auto-

tuned from a set of common sizes

Example workflow for vector addition

86

High level

transformations

“Loops + Slices”: a simple and flexible programming model

• No prior GPU programming experience
is required

• Two key pieces
• Identify parallel loops

• Can be nested

• Process a slice of elements per loop
iteration

• Typically 1-2048 elements

• Performance optimizations are manual
• Manual loop tiling, fusion etc

87

Loop

slice

A built-in function.

vidx” stands for “vector index”

Returns an array [i, i+1, i+2, …, i+BN-1]

“Loops + Slices”: two levels of parallelism

• No prior GPU programming experience
is required

• Two levels of parallelism
• Identify parallel loops

• Loop iterations run in parallel

• Process a slice of elements per loop
iteration

• Elements are processed in parallel

• Performance optimizations are manual
• Manual loop tiling, fusion etc

88

Loop

slice

A built-in function.

vidx” stands for “vector index”

Returns an array [i, i+1, i+2, …, i+BN-1]

Tensor Oriented Programming Model

• Operate directly on tensors of arbitrary size

• Tensor expressions must be in the form of slicings with explicit upper bound

• User specifies the properties, e.g. parallelism, for each dimension, e.g. :N

89

:N is the name of the dimension

“parallel,block(BN)” is the property of the

dimension

Performance improvement over DaCe by category

• Stencil
• Tie with DaCe except for jacobi_1d where

appy is ~5x slower

• Linear algebra (loop-based)
• ~5x faster than DaCe
• syrk, syr2k, spmv etc

• Solver
• trisolv, cholesky
• 2x and 12x faster than DaCe respectively

• Machine learning
• Softmax
• ~5x faster than DaCe

90

91

Device code

Only one thread executes in a thread block

DaCe code generation
for go_fast

i loop is sequential

Host code

APPy code generation
for go_fast

92

Indicates parallel reduction
Host code

Device code: parallel reduction

Also only one thread is used though

13x faster than DaCe-GPU!

i loop is parallel

N thread blocks are launched

DaCe code
generation for syrk

93

Kernel launch code: thread

block size is fixed to 32

Device code
slice :i+1 is sequential

Host code

APPy code
generation for syrk

94

M thread blocks launched

Thread block size is 128

Device code

4x faster than DaCe-GPU!

slice :i+1 is parallelized

On top of that, an optimization (loop

elimination) is applied for small slices

Host code

• On top of parallelization, the compiler also performs
• Loop fusion

• Loop tiling (via pragma)

95

Automatic compiler optimizations

Loop fusion case study: gesummv

• Memory footprint without fusion
• T = alpha * A[:M, :N]

• One load, one store of MxN matrix

• mv(T, x)

• One load of MxN matrix

• Memory footprint with fusion
• One load of MxN matrix

• ~3x speedup over CuPy is possible in
principle!

• Achieved speedup in practice: 2.5x

96

The final APPy code after automatic fusion

• Memory footprint without fusion
• T = alpha * A[:M, :N]

• One load, one store of MxN matrix

• mv(T, x)

• One load of MxN matrix

• With fusion
• One load of MxN matrix

• ~3x speedup over CuPy is possible in
principle!

• Achieved speedup in practice: 2.5x

97

Data is on-chip, perform two operations in a row

Loop fusion case study: floyd_warshall

• Memory footprint without fusion
• Add.outer

• One store of MxN matrix

• Minimum

• Two loads and one store of MxN matrix

• Assign

• One load and one store

• Memory footprint with fusion
• One load and one store of MxN matrix

• Theoretical max speedup over CuPy: 3x

• Actual achieved speedup: 3.3x

98

Loop tiling case study: covariance

99

A vector-matrix multiplication

Different rows (i:M) reuse the vector

Loop tiling case study: covariance

• Without blocking i:M
• Runtime: 30ms

• With blocking i:M (block size is 2)
• Runtime: 16ms

100

A vector-matrix multiplication

Different rows (i:M) reuse the vector

• Blocking the i:M dimension enhances
register reuse

• data[:float_n, i] gets reused

• Equivalent to loop unrolling here

Block size (tiling factor)

Loop tiling case study: floyd_warshall and gesummv

• Runtime of floyd_warshall
• Without blocking

• Runtime: 29ms

• With blocking (block size is 2)

• Runtime: 28ms

• Runtime of gesummv
• Without blocking

• 3ms

• With blocking (block size is 2)

• 3ms

101

Blocking is not helping much here, finer grain

performance analysis is needed to diagnose why.

Evaluation

• Programmability evaluation

• Performance evaluation

102

Programmability evaluation

• Original program structure is kept as
much as possible

• We try to only add pragmas, and only
change the program structure when
necessary

• Programming model adoption stats
• Use vanilla model only

• 3/19

• Use tensor expressions only
• 8/19

• Use loop + tensor expressions
• 8/19

• The only benchmarks that had code
adaptations besides annotations

• Softmax

• Spmv

• Azimint_naive

• Other conventions
• Parallel for loops must be a range loop

• The result of parallel reduction must be
an array, even if size is 1

103

Typical stencil kernel: heat_3d

104

One kernel launch per

annotated tensor expression

Typical loop-based kernel: covariance

105

One kernel launch per

parallel loop

Vanilla programming model alone

• Sometimes we use the vanilla model alone if more flexibility is needed, such
as in spmv and azimint_naive

106

spmv azimint_naive

Comparison of the two programming models

• Block-oriented model

• Compose programs using loops +
blocked tensor operations, only work
with a small chunk of data at a time

• High flexibility

• Low productivity

• Tensor-oriented model

• Compose programs using tensor
expressions, annotate each individual
dimension as parallel or not

• Low flexibility

• High productivity

107

• Correctness condition: there must exist a __syncthreads() between any pair of
memory operations that have data dependence

• A simple implementation: Insert a __syncthreads() after every memory load and
store, except for tensors that are only ever loaded

108

Memory consistency model implementation

• Tensor expressions are “regular” operations so some extraneous thread
synchronizations can be skipped

• Only necessary to insert one __syncthreads() before and after the loop, not within

109

Synchronization optimization

Some constraints

• Multi-dimensional tensor expression is fine

• Each dimension must be uniquely named

• Every dimension must have an entry in the pragma

• A reduction dimension must be specified in the pragma

110

Two dimensions

:M and :N

Storage implication

• Arrays
• Global memory

• Data block (variable)
• On-chip storage, e.g. registers

111

vi = range(i, min(i+BN, N))

Equivalent to

Loop tiling case study: covariance

• Blocking the i:M dimension enhances
register reuse

• data[:float_n, i] gets reused

• Equivalent to loop unrolling here

• Without blocking i:M
• Runtime: 30ms

• With blocking i:M (block size is 2)
• Runtime: 16ms

112

Register reuse achieved. Each thread handles two

elements from the i:M dimension

ReACT backup

113

• It uses a tree-based intermediate representation (IR), and transforms the IR with
redundancies-aware transformation passes (fully automatic)

• A pass to perform partial fusion thus to reduce type 1 and 2 redundancy

• A pass to reduce the intermediate storages to minimal sizes to reduce type 3 redundancy

• …

• Let’s look at some performance numbers before getting into how ReACT
generates code with less redundancies

114

How is ReACT able to reduce more redundancies?

Sparse-softmax N=16384

115

Redundancy-Aware fusion via index tree

• Two operations => create two subtrees
• 𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘 ∗ 𝐶𝑘ℎ (sparse-dense MM, B is CSR format)

• 𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ ∗ 𝐷ℎ𝑗 (dense MM)

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dependence edge116

SpMM-MM index trees

• Annotate each index node as “Dense” or “Sparse”

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Dense

117

Index tree corresponding loop structure

• k is a sparse (compressed) loop while i and h are dense loops.

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

118

Sparse

• Library approach
• No fusion

• TACO (a SOTA sparse tensor compiler)
• Maximal fusion

• ReACT (our work)
• Partial fusion

119

Redundancy-Aware fusion using index tree

SpMM-MM index trees: no fusion

• Time: Good, 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 + 𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽)

• Intermediate space: Poor, 𝑂(𝑁𝐼 ∗ 𝑁𝐻)

• Locality: Poor

𝑖

𝑘

ℎ

𝑆0: 𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1: 𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Dense

120

Generated code (library calls)

Future work

• More optimizations
• LICM is applicable for some benchmarks,

such as syrk and covariance

• More autotuning
• Now num_warps is fixed to 4 (128

threads), not always optimal

• Automatically add/search pragmas
• Some pragmas may be inferred

• Fuse across tensor expressions

• Support multi-node distributed
memory parallelism

121

Intrepydd backup

122

Code Optimization: Array Memory Recycling

1. it = 0
2. while it < max_iter:
3. A = B + C # all arrays
4. …
5. it += 1

Intrepydd source code Transformed code

1. A = empty_like(B)
2. while it < max_iter:
3. add(B, C, out=A)
4. …
5. it += 1

123

Code Optimization: Array Memory Recycling

1. it = 0
2. while it < max_iter:
3. A = B + C # all arrays
4. …
5. it += 1

Intrepydd source code Transformed code

1. A = empty_like(B)
2. while it < max_iter:
3. add(B, C, out=A)
4. …
5. it += 1

124

This also reduces reference counting management overhead

Code Optimization: Array Memory Recycling

• At an allocation site, and determine
whose memory can be reused

• A variable’s memory can only be reused if
• It is a unique pointer of its memory
• It is dead at this point
• Namely, in the unique pointer set, but not in

alive set

• Requires two data flow analysis: liveness
analysis and unique-pointer analysis

• A unique pointer set per program point

• Non-Aliasing-Creating statements:
• Binary op
• Unary op
• All others are considered alias creating

125

	Slide 1: High-level Compiler Optimizations for Python Programs
	Slide 2: Python is the most popular programming language today (according to the PyPL index)
	Slide 3: Python is also widely used in scientific computing and data science
	Slide 4: Python’s rich ecosystem for scientific computing
	Slide 5
	Slide 6
	Slide 7: Thesis statement
	Slide 8: Thesis contributions
	Slide 9: Thesis contributions
	Slide 10: Motivation for APPy
	Slide 11: Abstract machine model: a multi-vector processor
	Slide 12: APPy compiler directives
	Slide 13: Vector addition with APPy
	Slide 14: Utilize both layers of parallelism: parallel for + simd
	Slide 15: Utilize both layers of parallelism: parallel for + simd
	Slide 16: APPy allows you to use both loops and tensor expressions
	Slide 17: Code simplified with tensor expressions
	Slide 18: Tensor-Oriented model
	Slide 19: Matrix vector multiplication using tensor expressions
	Slide 20: Map an APPy worker to GPU execution
	Slide 21: Implementation
	Slide 22: A code generation example
	Slide 23: Performance evaluation
	Slide 24: Performance results
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Sparse matrix dense vector multiplication (SpMV)
	Slide 30: More results explanation
	Slide 31: APPy summary
	Slide 32: Thesis contributions
	Slide 33: Problem statement: desired input and output
	Slide 34: Limitations with State-of-the-art
	Slide 35: Redundancy types identified
	Slide 36: (Type 1) Reduction redundancy
	Slide 37: (Type 2) Loop-Invariant redundancy
	Slide 38: (Type 3) Load-Store redundancy
	Slide 39: (Type 4) Dead-Value redundancy
	Slide 40: Redundancies eliminated by each approach
	Slide 41: How is ReACT able to reduce these redundancies?
	Slide 42: Performance evaluation
	Slide 43: SpMM-MM results – 5.9x faster than TACO
	Slide 44: SpMM-MM results – 5.7x faster than SciPy
	Slide 45: SDDMM results – 1.5x faster than TACO
	Slide 46: SDDMM results – 57.3x faster than SciPy
	Slide 47: Sparse-softmax results – 2.0x faster than TACO
	Slide 48: Sparse-softmax results – 23.5x faster than SciPy
	Slide 49: Example: SpMM-MM
	Slide 50: Index tree of SpMM-MM
	Slide 51: SpMM-MM index trees
	Slide 52: Index tree corresponding loop structure
	Slide 53: SpMM-MM index trees: TACO (maximal fusion)
	Slide 54: SpMM-MM index trees: TACO (maximal fusion)
	Slide 55: SpMM-MM index trees: ReACT (partial fusion)
	Slide 56: SpMM-MM index trees: ReACT (partial fusion)
	Slide 57: ReACT summary
	Slide 58: Thesis contributions
	Slide 59: Problem statement: desired input and output
	Slide 60: Compilation Pipeline: From Intrepydd to C++
	Slide 61: Compilation Pipeline: From Intrepydd to C++
	Slide 62: Code Optimization
	Slide 63: Code Optimization: LICM
	Slide 64: Code Optimization: Sparse Operator Fusion
	Slide 65: Code Optimization: Dense Operator Fusion
	Slide 66: Experimental Methodology
	Slide 67: Intrepydd Sequential Performance
	Slide 68: Code Optimization
	Slide 69: Intrepydd summary
	Slide 70: Thank you!
	Slide 71
	Slide 72: APPy Backup
	Slide 73: More complicated examples
	Slide 74: A stencil kernel “heat_3d” using tensor expressions
	Slide 75: Utilize both layers of parallelism: parallel for + simd
	Slide 76: Sliced index notation (inspired by Einstein notation)
	Slide 77: Abstract machine model: a multi-vector processor
	Slide 78: Loop-Oriented model
	Slide 79: Loop-Oriented model
	Slide 80: More complicated examples
	Slide 81: More complicated examples
	Slide 82: More complicated examples
	Slide 83: Tensor expressions are inherently parallel
	Slide 84: Tensor Oriented Programming Model
	Slide 85: Tensor Oriented Programming Model
	Slide 86: Example workflow for vector addition
	Slide 87: “Loops + Slices”: a simple and flexible programming model
	Slide 88: “Loops + Slices”: two levels of parallelism
	Slide 89: Tensor Oriented Programming Model
	Slide 90: Performance improvement over DaCe by category
	Slide 91: DaCe code generation for go_fast
	Slide 92: APPy code generation for go_fast
	Slide 93: DaCe code generation for syrk
	Slide 94: APPy code generation for syrk
	Slide 95: Automatic compiler optimizations
	Slide 96: Loop fusion case study: gesummv
	Slide 97: The final APPy code after automatic fusion
	Slide 98: Loop fusion case study: floyd_warshall
	Slide 99: Loop tiling case study: covariance
	Slide 100: Loop tiling case study: covariance
	Slide 101: Loop tiling case study: floyd_warshall and gesummv
	Slide 102: Evaluation
	Slide 103: Programmability evaluation
	Slide 104: Typical stencil kernel: heat_3d
	Slide 105: Typical loop-based kernel: covariance
	Slide 106: Vanilla programming model alone
	Slide 107: Comparison of the two programming models
	Slide 108: Memory consistency model implementation
	Slide 109: Synchronization optimization
	Slide 110: Some constraints
	Slide 111: Storage implication
	Slide 112: Loop tiling case study: covariance
	Slide 113: ReACT backup
	Slide 114: How is ReACT able to reduce more redundancies?
	Slide 115: Sparse-softmax N=16384
	Slide 116: Redundancy-Aware fusion via index tree
	Slide 117: SpMM-MM index trees
	Slide 118: Index tree corresponding loop structure
	Slide 119: Redundancy-Aware fusion using index tree
	Slide 120: SpMM-MM index trees: no fusion
	Slide 121: Future work
	Slide 122: Intrepydd backup
	Slide 123: Code Optimization: Array Memory Recycling
	Slide 124: Code Optimization: Array Memory Recycling
	Slide 125: Code Optimization: Array Memory Recycling

