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Python is the most popular programming language today 
(according to the PyPL index)
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https://pypl.github.io/PYPL.html

"The PYPL PopularitY of Programming Language Index is created by analyzing how often language tutorials are searched on Google."

https://pypl.github.io/PYPL.html


Python is also widely used in scientific computing and data 
science
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https://towardsdatascience.com/which-programming-language-should-data-scientists-learn-first-aac4d3fd3038https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-

python-in-science?slide=32



Python’s rich ecosystem for scientific computing
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https://speakerdeck.com/jakevdp/the-state-of-the-stack-scipy-2015-keynote
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But, isn’t Python slow?
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But, isn’t Python slow?

Python is great for HPC

with better compilers!



Compilers that are aware of high-level operator and loop semantics can 
deliver improved performance for Python programs on CPUs and GPUs 

relative to past work
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Thesis statement



• APPy: Annotated Parallelism for Python on GPUs 

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators 

• Intrepydd: Performance, Productivity, and Portability for Data Science Application 
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations 
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Thesis contributions
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Thesis contributions



• Scientific Python programs can often benefit from using a GPU

• Two common approaches for GPU acceleration in Python
• Library-based accelerations (e.g. CuPy), but many programs cannot be expressed using pre-

defined operators alone

• Creating custom CUDA/OpenCL kernels is challenging and time-consuming to get 
correctness and high performance

• Our solution (APPy)
• Users write regular sequential Python code + annotate with simple pragmas

• The compiler automatically generates GPU kernels from it

Motivation for APPy
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CuPy CUDA APPy

Productivity High Low High

Generality Low Very high High
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Abstract machine model: a multi-vector processor 

memory

Support cross-lane reduction

Maximum vector length: 

appy.MVL

MIMD

SIMD

Support atomic update to memory locations



APPy compiler directives

• Annotations for loops
• #pragma parallel for

• #pragma parallel for single

• #pragma simd

• Annotations for statements
• #pragma atomic

• Annotations for tensor expressions
• #pragma {dim}=>{properties}
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• Difference from OpenMP codegen
• OpenMP directly exposes the parallelism

hierarchy of the GPUs and requires more
complicated pragmas to generate GPU
code

• OpenMP does not recognize and compile
tensor expressions



Vector addition with APPy
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1. @appy.jit
2. def vector_add(a, b, c, N):
3.     #pragma parallel for
4.     for i in range(N):
5.         c[i] = a[i] + b[i]

i = 0 i = 1 i = 2

Software

Hardware 

(abstract)

N workers launched



Utilize both layers of parallelism: parallel for + simd
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Performance boost!

1. @appy.jit
2. def vector_add(a, b, c, N):
3.     #pragma parallel for
4.     for i in range(N):
5.         c[i] = a[i] + b[i]

1. @appy.jit
2. def vector_add(a, b, c, N):
3.     #pragma parallel for simd
4.     for i in range(N):
5.         c[i] = a[i] + b[i]

N / MVL workers launchedN workers launched



Utilize both layers of parallelism: parallel for + simd
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Performance boost!

1. @appy.jit
2. def _generated(a, b, c, N):
3.     #pragma parallel for
4.     for i in range(0, N, MVL):
5.         c[i:i+MVL] = …

Compiler generated

strip-mined loop

1. @appy.jit
2. def vector_add(a, b, c, N):
3.     #pragma parallel for
4.     for i in range(N):
5.         c[i] = a[i] + b[i]

1. @appy.jit
2. def vector_add(a, b, c, N):
3.     #pragma parallel for simd
4.     for i in range(N):
5.         c[i] = a[i] + b[i]

N workers launched N / MVL workers launched



APPy allows you to use both loops and tensor expressions
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Using loops is flexible, but sometimes it can be verbose … 

Tensor operators can be more natural if applicable



Code simplified with tensor expressions
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Productivity improvement: 15 lines to 7 lines! (Also more readable)

Use loop only Use loop + tensor expressions

The compiler automatically converts these tensor

expressions into loops with operator fusion

1. @appy.jit

2. def softmax_loop_oriented(a, b, M, N):

3.     #pragma parallel for

4.     for i in range(M):

5.         m = float('-inf’)

6.         #pragma simd 

7.         for j in range(N):

8.             m = maximum(m, a[i,j])

9.         s = 0.0

10.         #pragma simd 

11.         for j in range(N): 

12.             s += exp(a[i,j] - m)

13.         #pragma simd

14.         for j in range(N):

15.             b[i,j] = exp(a[i,j] - m) / s

1. @appy.jit(auto_simd=True)

2. def softmax_tensor_oriented(a, b, M, N):

3.     #pragma parallel for

4.     for i in range(M):

5.         m = max(a[i,:N])

6.         s = sum(exp(a[i,:N] - m))

7.         b[i,:N] = exp(a[i,:N] - m) / s



• Allows operating directly on tensors of arbitrary size as a whole
• Tensor expressions need to be in the form of sliced index notation

• C[:M, :N] = A[:M, :N] + B[:M, :N]

• B[:M] = sum(A[:M, :N], axis=1)

• A[:M, :N] = B[:M, None] + C[None, :N]

• B[1:M-1, 1:N-1] = 0.2 * (A[1:M-1, 1:N-1] + A[1:M-1, :N-2] + A[1:M-1, 2:N] + …)

• Dimensions need to be annotated using syntax low:up=>prop1,prop2, … 

• Supported properties
• Parallel, simd, reduction, le (small dimension optimization)

• More automatic compiler optimizations
• Operator fusion

• Synchronization reduction
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Tensor-Oriented model



Matrix vector multiplication using tensor expressions

• Loop order is determined by the
order of the dimensions from left
to right in the pragma

• The last dimension is
automatically strip-mined with
option auto_simd=True

• The optimal value of appy.MVL is
automatically tuned from a list of
common choices
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Compiler generated

1. @appy.jit(auto_simd=True)

2. def mv(alpha, A, x):

3.     M, N = A.shape

4.     #pragma :M=>parallel :N=>reduction(sum:y)

5.     y[:M] = mv(alpha * A[:M, :N], x[:N])

1. @appy.jit

2. def mv_generated(alpha, A, x):

3.     M, N = A.shape

4.     #pragma parallel for

5.     for _i0 in range(0, M, 1):

6.         y[_i0] = 0.0

7.         for _i1 in range(0, N, appy.MVL): 

8.             _v1 = appy.vidx(_i1, appy.MVL, N) 

9.             y[_i0] += sum(alpha * A[_i0, _v1] * x[_v1])



Map an APPy worker to GPU execution

• Mapping each worker to a thread block is more flexible, but their execution
models don’t match

• APPy worker: statements execute sequentially

• Thread block: multiple warps can execute asynchronously

• Solution: compiler automatically inserts thread synchronizations after memory 
operations to handle cross-thread dependence

• Optimization 1: synchronizations are unnecessary if within loops generated from tensor 
expressions due to their regular computations

• Optimization 2: if a tensor being written is never read in any other statements, then it cannot 
have data dependence with any other memory reads
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Implementation

• All transformation passes are Python AST based
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High-level transformations

Insert synchronizations

Convert tensor 

expressions to loops

…

Low-level transformations

Compile to Triton code

Input APPy 

program

Lower-level

APPy program

Triton 

GPU kernel

Host code



A code generation example
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High-level transform

1. @appy.jit(auto_simd=True)

2. def mv(alpha, A, x):

3.     M, N = A.shape

4.     #pragma :M=>parallel :N=>reduction(sum:y)

5.     y[:M] = mv(alpha * A[:M, :N], x[:N])

1. @appy.jit

2. def mv(alpha, A, x):

3.     M, N = A.shape

4.     #pragma parallel for

5.     for _i0 in range(0, M, 1):

6.         tmp = 0.0

7.         for _i1 in range(0, N, appy.MVL): 

8.             _v1 = appy.vidx(_i1, appy.MVL, N) 

9.             tmp += sum(alpha * A[_i0, _v1] * x[_v1])

10.         y[_i0] = tmp

1. @triton.jit

2. def _kernel(M, N, A, A_stride0, A_stride1, x, \

3.            x_stride0, y, y_stride0, MVL: tl.constexpr):

4.     _i0 = tl.program_id(0) * 1

5.     tmp = 0.0

6.     for _i1 in range(0, N, MVL):

7.         tmp += tl.sum(

8.             alpha * tl.load(

9.                     A + _i0*A_stride0 + \

10.                         _i1 + tl.arange(0, MVL),

11.                     mask=_i1 + tl.arange(0, MVL) < N

12.                 ),

13.             tl.load(

14.                 x + _i1 + tl.arange(0, MVL),

15.                 mask=_i1 + tl.arange(0, MVL) < N

16.             )

17.         )

18.     tl.store(y + _i0, tmp)

def mv(alpha, A, x):

    M, N = A.shape

    MVL = 128; grid = (M,)

    _kernel[grid](M, N, A, A.stride(0), A.stride(1), \

        x, x.stride(0), y, y.stride(0), MVL)Gen host code

Gen device code



Performance evaluation

• CPU: Ryzen 7 5800X

• 8 cores

• Cache sizes

• L1: 32K, L2: 512K, L3: 32M

• GPU: RTX 3090

• 10496 cuda cores, 82 SMs

• Cache sizes

• L1: 128K, L2: 6M

• Benchmarking methodology

• Each benchmark is run 10 times and report median

• Each benchmark run is ~ 1 second

• Comparisons
• NumPy (CPU library), CuPy (GPU library)

• Numba (SOTA CPU compiler), JAX (SOTA JIT compiler 
with GPU backend), DaCe-GPU (SOTA GPU compiler)

• 20 kernels
• azimint_naive

• cholesky
• covariance
• fdtd_2d
• floyd_warshall

• gemm
• gemver
• gesummv
• go_fast
• gramschmidt

• heat_3d
• jacobi_1d
• jacobi_2d
• softmax

• spmv
• symm
• syr2k
• syrk
• trisolv

• trmm

23



Performance results
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• NumPy
• Rightmost column shows absolute runtime

• Other frameworks: speedups/slowdown relative to 
NumPy

• Acknowledgment: visualization script from npbench (ETH)

• Up arrow indicates speedup (from light green to dark green)

• Down arrow indicates slowdown (from orange to red)

• Summary of Appy's performance (geometric means)
• 30x speedup over NumPy

• 8.3x speedup over Numba

• 30x speedup over CuPy

• 18.8x speedup over JAX (with JIT)

• 3.1x speedup over DaCe-GPU

This work
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Faster than DaCe due to some 

patterns are parallelized with APPy but 

sequentialized by DaCe
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Faster than DaCe due to small dimension 

optimization in APPy (cached in registers)
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Faster than DaCe due to APPy generates 

fused code while DaCe does not
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Now show a code example: spmv



1. @appy.jit

2. def spmv(A_row, A_col, A_val, x):

3. N = A_row.shape[0]

4. y = empty([N - 1], dtype=A_val.dtype)

5. #pragma parallel for

6. for i in range(N - 1):

7. y[i] = 0.0

8. #pragma simd

9. for j in range(A_row[i], A_row[1+i]): 

10. cols = A_col[j]

11. y[i] += A_val[j] * x[cols]

12. return y

Sparse matrix dense vector multiplication (SpMV)
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Dynamic loop bounds are fine with

#pragma simd

CuPy version

1. def spmv(A_row, A_col, A_val, x):

2. N = A_row.shape[0]

3. y = empty([N - 1], dtype=A_val.dtype)

4. for i in range(N - 1):

5. cols = A_col[A_row[i]:A_row[i + 1]]

6. vals = A_val[A_row[i]:A_row[i + 1]]

7. y[i] = dot(vals, x[cols])

8. return y

APPy version

10557x speedup! 1

1. Testing machine is a RTX 3090 GPU and the baseline NumPy runtime is ~0.3 seconds



More results explanation

• Why faster than JAX (with JIT)?
• Parallelizable loops are parallelized by APPy but sequentialized by JAX

• APPy fuses some operator sequence pattern that’s not fused by JAX

• Why faster than CuPy? 
• Loop-based CuPy kernels run the loops sequentially in the Python interpreter while 

APPy runs them in parallel in native code

• Operator-based CuPy kernels have memory inefficiency due to the need to materialize 
intermediate results for a sequence of operators while APPy does operator fusion

• Why faster than NumPy/Numba?
• GPUs are known to be more efficient than CPUs for data parallel applications
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APPy summary

• We present APPy, a Python-based programming model and compiler that 
allows users to parallelize sequential Python code on GPUs using compiler 
directives

• We present the design of a loop-oriented programming model and a tensor-
oriented programming model, and their implementations, including code 
generation and automatic compiler optimizations

• We evaluate the performance of APPy using 20 kernels from scientific 
computing and demonstrate significant speedup over CuPy (30× on 
average), JAX (18.8× on average), and DaCe-GPU (3.1× on average)
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• APPy: Annotated Parallelism for Python on GPUs 

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators 

• Intrepydd: Performance, Productivity, and Portability for Data Science Application 
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations 

32

Thesis contributions



Problem statement: desired input and output

• Desired input: operator program in 
Python (can be sparse)

• Desired output: fused CPU kernel with 
reduced redundant memory accesses 
and computations

33



• TACO
• A code generator for arbitrary sparse/dense tensor algebra expressions

• maximal fusion is implicit during code generation

• Limitations
• Maximal fusion may introduce some types of redundant memory accesses and computations

• Maximal fusion cannot properly fuse certain reduction expressions

Limitations with State-of-the-art

34
Maximal fusion does not work because 

it requires the “/” operator to be distributive over a summation



Redundancy types identified

• Type 1 (Reduction Redundancy): 
When multiple multiply-add 
operations are performed instead of 
multiple adds followed by a single 
multiply (distributive law).

• Type 2 (Loop-Invariant Redundancy): 
When a loop invariant expression is 
introduced (could be invariant in a 
non-innermost loop) due to maximum 
fusion.

• Type 3 (Load-Store Redundancy): 
When some values are stored and 
loaded in separate loops, and the 
loads/stores can be eliminated after 
fusion --- a classical benefit of loop 
fusion.

• Type 4 (Dead-Value Redundancy): 
When some values are computed but 
not used later on (e.g., when 
multiplying with 0s in a sparse tensor) 
--- another classical benefit of loop 
fusion.

35



(Type 1) Reduction redundancy
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1. for (int i = 0; i < NI; i++) {

2.   double s = 0;

3.   double bi = b[i];

4.   for (int j = 0; j < NJ; j++) {

5.     s += A[i,j] * bi;

6.     ...

7.   }

8.   ...

9. }  

1. for (int i = 0; i < NI; i++) {

2.   double s = 0;

3.   for (int j = 0; j < NJ; j++) {

4.     s += A[i,j];

5.     ...

6.   }

7. s = s * B[i];

8.   ...

9. }  

Reduced number of multiplications in the innermost loop!

With redundancy (due to maximal fusion) Without redundancy

Input: c = b * sum(A, axis=1)



(Type 2) Loop-Invariant redundancy
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1. for (int i = 0; i < NI; i++)

2.   for (int k = 0; k < NK; k++)

3.     for (int j = 0; j < NJ; j++)

4.       A[i,j] += (B[i,j] + E[i,j]) * \ (C[i,k] * D[k,j]);

1. double* T = new double[NJ];

2. for (int i = 0; i < NI; i++) {

3.   for (int j = 0; j < NJ; j++) {

4. T[j] = B[i,j] + E[i,j];

5.   }

6.   for (int k = 0; k < NK; k++) {

7.     for (int j = 0; j < NJ; j++) {

8.       A[i,j] += T[j] * (C[i,k] * D[k,j]);

9.     }

10.   }

11. }

B[i,j] + E[i,j] is no longer repeatedly calculated for different k 

iterations!

Input: A = (B + E) * (C @ D)

With redundancy (due to maximal fusion) Without redundancy



(Type 3) Load-Store redundancy
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1. double* s = new double[NI];

2. // Operator 1

3. for (int i = 0; i < NI; i++) {

4.   s[i] = 0;

5.   for (int j = 0; j < NJ; j++) {

6.     s[i] += A[i,j];

7.   }

8. }

9. // Operator 2

10. for (int i = 0; i < NI; i++) {  

11.   for (int j = 0; j < NJ; j++) {

12.     B[i,j] = A[i,j] / s[i];

13.   }

14. }

1. // Operator 1 and 2 fused

2. for (int i = 0; i < NI; i++) {

3.   double s = 0;

4.   for (int j = 0; j < NJ; j++) {

5.     s += A[i,j];

6.   }

7.   

8.   for (int j = 0; j < NJ; j++) {

9.     B[i,j] = A[i,j] / s;

10.   }

11. } 

A[i,j] and s[i] now have reduced reuse distance, which leads 

to better locality!

Input: s = sum(A, axis=1); B = A / s[:, None]

With redundancy (due to no fusion) Without redundancy



(Type 4) Dead-Value redundancy
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1. // Operator 1

2. double* tmp = new double[NI];

3. for (int i = 0; i < NI; i++) {

4. tmp[i] = alpha * A[i];

5. }

6. // Operator 2

7. for (int i = 0; i < NI; i++) {

8.   if (A[i] < 0) {

9. B[i] = tmp[i];

10.   }

11.   else {

12.     B[i] = A[i];

13.   }

14. } 

1. // Operator 1 and 2 fused

2. for (int i = 0; i < NI; i++) {

3.   if (A[i] < 0) {

4. B[i] = alpha * A[i];

5.   }

6.   else {

7.     B[i] = A[i];

8.   }

9. } 

The use of tmp is now eliminated, which reduces 

redundant computations and memory accesses!

Not all values in array tmp are useful!

Input: B = where(A < 0, alpha * A, A)

With redundancy (due to no fusion) Without redundancy



Redundancies eliminated by each approach
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Redundancy type ReACT (this work) TACO SciPy

Reduction (type 1) Yes No Yes

Loop invariant (type 2) Yes No Yes

Load store (type 3) Yes Partially No

Dead value (type 4) Yes Yes No



How is ReACT able to reduce these redundancies?
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High-level transformations

Convert to IR

Redundancy-Aware 

fusion

…

Low-level transformations

C++ code generator

Sequence of 

tensor operators
final IR

C++ code with

OpenMP pragmas

Memory optimization

Transformation passes are redundancy-aware

Reduces type 3 redundancy

Reduces type 1 and 2 redundancy



• Test machine
• 16-core Intel(R) Xeon(R) 2.20GHz CPU
• OMP_NUM_THREADS is set to 16

• Kernels (all kernels have at least 2 operators)
• SpMM-MM (sparse-dense matmul followed by dense matmul)
• SDDMM/Masked MM (a dense matmul followed by a dense-sparse element-wise mul)
• Sparse-softmax (row-wise softmax on a sparse matrix)

• Expressed using basic operators such as exp, sum, divide etc

• Sparse matrices
• A collection of real-world matrices from SuiteSparse
• All sparse matrices are in CSR format

• Comparisons
• ReACT (our approach)
• TACO (SOTA compiler)
• SciPy.sparse (SOTA library)

Performance evaluation

42



SpMM-MM results – 5.9x faster than TACO 

Redundancy 
types 

present

TACO
output

ReACT
output

Type 1 Yes No

Type 2 Yes No

Type 3 No No

Type 4 No No

43

Code time complexity is reduced 

from 𝑂 𝑁𝑁𝑍 ∗ 𝑁𝐻 ∗ 𝑁𝐽  (TACO)

to 𝑂(𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽) (ReACT)

“No” is good here!



SpMM-MM results – 5.7x faster than SciPy

Redundancy 
types 

present

SciPy ReACT
output

Type 1 No No

Type 2 No No

Type 3 No No

Type 4 Yes No

44

ReACT has better locality + more parallelism

Note: SciPy uses only a single thread for its SpMM 

implementation  



SDDMM results – 1.5x faster than TACO 

Redundancy 
types 

present

TACO
output

ReACT
output

Type 1 Yes No

Type 2 No No

Type 3 No No

Type 4 No No

45

Both the amount of memory accesses and computations 

are reduced by eliminating type 1 redundancy.

SciPy runs out of

memory here



SDDMM results – 57.3x faster than SciPy

Redundancy 
types 

present

SciPy ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 Yes No

46

Many redundant computations are saved by eliminating 

type 4 (dead value) redundancies

SciPy runs out of

memory here



Sparse-softmax results – 2.0x faster than TACO
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Redundancy 
types 

present

TACO
output

ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 No No

TACO cannot fuse it into one single 

kernel while ReACT does, so ReACT has 

better localityNote: an AMD Ryzen 9 3900X was used for this 

experiment



Sparse-softmax results – 23.5x faster than SciPy
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Redundancy 
types 

present

TACO
output

ReACT
output

Type 1 No No

Type 2 No No

Type 3 Yes No

Type 4 No No

SciPy’s sparse kernels are not parallelized

The operations are also not fused
Note: an AMD Ryzen 9 3900X was used for this 

experiment



• Sparse-dense matmul followed by dense-dense matmul
• Commonly used in graph neural networks

• Original input expression (sparse matrices are in red, assuming CSR format)
• Python: 𝐴 = 𝐵 @ 𝐶 @ 𝐷

• Transformations
• Step 1: convert into index notation statements (each statement contains one operator)

• 𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘 @ 𝐶𝑘ℎ (sparse-dense MM)

• 𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ @ 𝐷ℎ𝑗 (dense-dense MM)

• 𝑇𝑖ℎ is compiler-generated temporary variable

• Step 2: create an index tree from the index notation statements

• Next slide

49

Example: SpMM-MM



Index tree of SpMM-MM

• Two operations => create two subtrees
• 𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘 @ 𝐶𝑘ℎ

• 𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ @ 𝐷ℎ𝑗

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dependence edge50

Index node

Compute node



SpMM-MM index trees

• Annotate each index node as “Dense” or “Sparse”

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Dense
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Index tree corresponding loop structure

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗
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Sparse iteration space

Dense dense iteration space

1. for (int i = 0; i < NI; i++) {

2.     for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3.         for (int h = 0; h < NH; h++) {

4.             ...

5.             // T[i, h] += B[i, k] * C[k, h]

6.             T[i, h] += B.vals[k] * C[B.cols[k], h];

7.             ...

8.         }

9.     }

10. }



SpMM-MM index trees: TACO (maximal fusion )

• Time: Bad, 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 ∗ 𝑁𝐽)
• Due to type 1 and 2 redundancies

• Intermediate space: Great, 𝑂(1)

• Locality: Great
𝑖

𝑘

ℎ

𝑗

Dense

Sparse

Dense

Dense

𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ𝐷ℎ𝑗
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SpMM-MM index trees: TACO (maximal fusion )

𝑖

𝑘

ℎ

𝐴𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ𝐷ℎ𝑗

𝑗

Dense

Sparse

Dense

Dense

Generated code
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1. for (int i = 0; i < NI; i++) {

2.     for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3.         for (int h = 0; h < NH; h++) {

4.             for (int j = 0; j < NJ; j++) {

5.                 ...

6.                 // A[i, h] += B[i, k] * C[k, h] * D[h, j]

7.                 A[i, h] += B.vals[k] * C[B.cols[k], h] * D[h, j];

8.                 ...

9.             }            

10.         }

11.     }

12. }



SpMM-MM index trees: ReACT (partial fusion)

• Time: Good, 𝑂 𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 + 𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽
• Typically much smaller than 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 ∗ 𝑁𝐽)

• Intermediate space: Good, 𝑂(𝑁𝐻) 
• After memory optimization

• Locality: Good
𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense
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SpMM-MM index trees: ReACT (partial fusion)

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Generated code
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1. for (int i = 0; i < NI; i++) {

2.     for (int k = B.rowptrs[i]; k < B.rowptrs[i+1]; k++) {

3.         for (int h = 0; h < NH; h++) {

4.             ...

5.             // T[i, h] += B[i, k] * C[k, h]

6.             T[h] += B.vals[k] * C[B.cols[k], h];

7.             ...

8.         }

9.     }

10.     for (int h = 0; h < NH; h++) {

11.         for (int j = 0; j < NJ; j++) {

12.             ...

13.             // A[i, h] += T[i, h] * D[h, j]

14.             A[i, h] += T[h] * D[h, j];

15.             ...

16.         }

17.         T[h] = 0;     

18.     }

19. }



ReACT summary

• We identify four common types of redundancies that can occur when 
generating code for a sequence of dense/sparse tensor operations

• We introduce ReACT, which consists of a set of redundancy-aware code 
generation techniques and can generate code with reduced redundancies

• Empirical evaluation on real-world applications such as SDDMM, GNN, 
Sparse-Softmax, and MTTKRP showed that our generated code with 
redundancy elimination resulted in 1.1× to orders-of-magnitude 
performance improvements relative to a state-of-the-art tensor algebra 
compiler (TACO) and library approaches such as scipy.sparse
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• APPy: Annotated Parallelism for Python on GPUs 

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators 

• Intrepydd: Performance, Productivity, and Portability for Data Science Application 
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations 
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Thesis contributions



Problem statement: desired input and output

• Desired input: whole kernel in Python 
(control flow is fine)

• Desired output: C++ code
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1. it = 0
2. while it < max_iter:
3.   u = 1.0 / x
4.   v = c * (1 / (K.T @ u))
5.   x = ((1 / r) * K) @ v
6.   it += 1



Compilation Pipeline: From Intrepydd to C++

1. def foo(xs: Array(double, 2)) -> double:
 ... 

2.     for i in range(shape(xs, 0)):
3.         for j in range(shape(xs, 1)): 
4.             sum += xs[i, j] 
5.        ... 

Intrepydd source code
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Compilation Pipeline: From Intrepydd to C++

Intrepydd source code

1. Array<double>* foo(Array<double>* xs) { 
2. ... 
3. for (int i = 0; i < pydd::shape(xs, 0); i += 1) { 
4. for (int j = 0; j < pydd::shape(xs, 1); j += 1) {
5. sum += xs.data()[i*pydd::shape(xs, 1)+j]; 
6. ... 

Intrepydd compiler

Resulting C++ code

1. def foo(xs: Array(double, 2)) -> double:
 ... 

2.     for i in range(shape(xs, 0)):
3.         for j in range(shape(xs, 1)): 
4.             sum += xs[i, j] 
5.        ... 
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• High-level Optimizations in AOT compilation

• Loop invariant code motion (LICM OPT)

• Dense & Sparse Array Operator Fusion (Array OPT)

• Array allocation and slicing optimization (Memory OPT)

Code Optimization
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Code Optimization: LICM

1. it = 0
2. while it < max_iter:
3.   u = 1.0 / x
4.   v = c * (1 / (K.T @ u)) # SDDMM
5.   x = ((1 / r) * K) @ v
6.   it += 1

Intrepydd source code (Sinkhorn)

1. it = 0
2. # Hoisted loop-invariant expressions
3. tmp1 = K.T
4. tmp2 = (1 / r) * K
5. while it < max_iter:
6.   u = 1.0 / x

7.   v = empty_like(c)
8.     # Fused loop iterating over non-zero elements
9.   for row, col, val in c.nonzero_elements():
10.     tmp3 = 0.0
11.     for idx in range(shape(tmp1, 1)):
12.       tmp3 += tmp1[row, idx] * u[idx, col]
13.         tmp4 = val * (1 / tmp3)
14.     spm_set_item(v, tmp4, row, col)

15.   x = spmm_dense(tmp2, v)

16.   it += 1

Transformed code

c: sparse

K, u: dense
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Code Optimization: Sparse Operator Fusion

1. it = 0
2. while it < max_iter:
3.   u = 1.0 / x
4.   v = c * (1 / (K.T @ u)) # SDDMM
5.   x = ((1 / r) * K) @ v
6.   it += 1

Intrepydd source code (Sinkhorn)

1. it = 0
2. # Hoisted loop-invariant expressions
3. tmp1 = K.T
4. tmp2 = (1 / r) * K
5. while it < max_iter:
6.   u = 1.0 / x
7.   v = empty_like(c)
8.     # Fused loop iterating over non-zero elements
9.   for row, col, val in c.nonzero_elements():
10.     tmp3 = 0.0
11.     for idx in range(shape(tmp1, 1)):
12.       tmp3 += tmp1[row, idx] * u[idx, col]
13.         tmp4 = val * (1 / tmp3)
14.     spm_set_item(v, tmp4, row, col)

15.   x = spmm_dense(tmp2, v)

16.   it += 1

c: sparse

K, u: dense
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SDDMM: masked matmul

Transformed code



Code Optimization: Dense Operator Fusion

1. it = 0
2. while it < max_iter:
3.   u = 1.0 / x
4.   v = c * (1 / (K.T @ u)) # SDDMM
5.   x = ((1 / r) * K) @ v
6.   it += 1

Intrepydd source code (Sinkhorn)

1. it = 0
2. # Hoisted loop-invariant expressions
3. tmp1 = K.T
4. tmp2 = (1 / r) * K
5. while it < max_iter:
6.   u = 1.0 / x
7.   v = empty_like(c)
8.     # Fused loop iterating over non-zero elements
9.   for row, col, val in c.nonzero_elements():
10.     tmp3 = 0.0
11.     for idx in range(shape(tmp1, 1)):
12.       tmp3 += tmp1[row, idx] * u[idx, col]
13. tmp4 = val * (1 / tmp3)
14.     spm_set_item(v, tmp4, row, col)

15.   x = spmm_dense(tmp2, v)

16.   it += 1

Transformed code

c: sparse

K, u: dense
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SDDMM: masked matmul



Experimental Methodology

Benchmark Applications

• A subset of Python based data analytics applications from a recent DARPA 
program

• Mix of non-library call and library call dominated applications

Test machine

• Dual Intel Xeon Silver 4114 CPU @ 2.2GHz with 192GB of main memory and 
hyperthreading disabled

Comparisons

• Baseline idiomatic Python 3.7.6

• Cython

• Numba
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Intrepydd Sequential Performance

Intrepydd offers 20.7x speedup on average (geomean) over 

baseline Python
67



• High-level Optimizations in AOT compilation

• Loop invariant code motion (LICM OPT)

• Dense & Sparse Array Operator Fusion (Array OPT)

• Array allocation and slicing optimization (Memory OPT)

• Impact on performance by each OPT

Code Optimization
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Intrepydd summary

• We present Intrepydd, a Python-based programming system, which is 
designed to enable data scientists to write application kernels with high 
performance, productivity, and portability

• We implement a number of high-level compiler optimizations during the 
compilation

• We evaluate the performance of Intrepydd using 6 data science kernels and 
show significant single-core performance improvements of Intrepydd 
relative to vanilla Python/NumPy (1.5× to 498.5×), Cython (1.5× to 47.5×) 
and Numba (1.7× to 38.1×) 
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Thank you!

70

• APPy: Annotated Parallelism for Python on GPUs 

• [CC24] Parallelize Python loops and tensor expressions on GPUs

• ReACT: Redundancy-Aware Code Generation for Tensor Expressions
• [PACT22] Redundancy elimination when fusing sparse/dense tensor operators 

• Intrepydd: Performance, Productivity, and Portability for Data Science Application 
Kernels

• [Onward!20] Compile Python/NumPy to C++ with high-level optimizations 



APPy ReACT Intrepydd

Input Python programs Tensor DSL Python programs

Output Triton code for GPUs C++ code for CPUs C++ code for CPUs

Compilation JIT AOT AOT

Requires type annotation No Yes Yes

Requires compiler 

directives

Yes No Only for pfor

Parallel reduction Yes via pragma No No

Operator fusion Yes Yes Yes

LICM No Yes Yes

Sparse redundancy 

elimination

No Yes Yes

General sparse codegen No Yes No

Small tensor caching Yes via pragma No No
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APPy Backup
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More complicated examples

• Sparse matrix dense vector 
multiplication

• Azimuthal integration, related to X-ray 
images

73

Dynamic loop bounds are fine with

#pragma simd

Parallel reduction via atomic update

1.8x speedup over CuPy (operator only) 110830x speedup over CuPy (loop-based) 1

1. Testing machine is a RTX 3090 GPU and the baseline NumPy runtime is ~0.3 seconds



A stencil kernel “heat_3d” using tensor expressions

74

One kernel launch per 

annotated tensor expression

Automatically append a simd

property to the last dimension



Utilize both layers of parallelism: parallel for + simd

75

Performance boost!

@appy.jit
def vector_add(a, b, c, N):
    #pragma parallel for
    for i in range(N):
        c[i] = a[i] + b[i]

@appy.jit
def vector_add(a, b, c, N):
    #pragma parallel for simd
    for i in range(N):
        c[i] = a[i] + b[i]



Sliced index notation (inspired by Einstein notation)

• Two steps
• Define index variables (dimension size)

• Create sliced index notations

• Examples (assume “M, N = A.shape”)
• Element-wise multiplication of A and B

• C[:M, :N] = A[:M, :N] + B[:M, :N]

• Row-wise summation of A

• B[:M] = sum(A[:M, :N], axis=1)

• Stencil pattern

• B[1:M-1, 1:N-1] = 0.2 * (A[1:M-1, 1:N-1] + 
A[1:M-1, :N-2] + A[1:M-1, 2:N] + …)

• Broadcast

• A[:M, :N] = B[:M, None] + C[None, :N]

76

• Annotate each distinct dimension
(slice) with a list of properties

• :M=>parallel :N=>reduction(sum)
• Indicate to the :M dimension should be

processed in parallel and :N is a reduction
dimension

• 1:M-1=> parallel 1:N-1=>parallel
• Indicate both dimensions should be

processed in parallel
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Abstract machine model: a multi-vector processor 

memory



Loop-Oriented model

78

Higher performance can be achieved by

working with a block of data per iteration

Performance boost!



Loop-Oriented model
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Higher performance can be achieved by

working with a block of data per iteration

Performance boost!

A built-in function that returns a “vector 

of indices”, e.g. [i, i+1, i+2, …, i+BN-1]



More complicated examples

• Sparse matrix dense vector 
multiplication

• Azimuthal integration, related to X-ray 
images

80

spmv azimint_naive



More complicated examples

• Sparse matrix dense vector 
multiplication

• Azimuthal integration, related to X-ray 
images

81

spmv azimint_naive

Block size (Bj) must be a constant



More complicated examples

• Sparse matrix dense vector 
multiplication

• Azimuthal integration, related to X-ray 
images

82

spmv azimint_naive

Block size (Bj) must be a constant Indicates parallel reduction



Tensor expressions are inherently parallel
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Tensor Oriented Programming Model

• Advantages
• More concise

• More automatic optimizations
• Automatic loop fusion

84

Two additions will be fused.



Tensor Oriented Programming Model

• Advantages
• More concise

• More automatic optimizations
• Automatic loop fusion

• Automatic loop tiling (a simple form)

85

:N will be automatically blocked, 

and the optimal block size is auto-

tuned from a set of common sizes



Example workflow for vector addition

86

High level 

transformations



“Loops + Slices”: a simple and flexible programming model 

• No prior GPU programming experience 
is required

• Two key pieces
• Identify parallel loops

• Can be nested

• Process a slice of elements per loop 
iteration

• Typically 1-2048 elements

• Performance optimizations are manual
• Manual loop tiling, fusion etc
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Loop

slice

A built-in function. 

vidx” stands for “vector index”

Returns an array [i, i+1, i+2, …, i+BN-1]



“Loops + Slices”: two levels of parallelism

• No prior GPU programming experience 
is required

• Two levels of parallelism
• Identify parallel loops

• Loop iterations run in parallel

• Process a slice of elements per loop 
iteration

• Elements are processed in parallel

• Performance optimizations are manual
• Manual loop tiling, fusion etc
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Loop

slice

A built-in function. 

vidx” stands for “vector index”

Returns an array [i, i+1, i+2, …, i+BN-1]



Tensor Oriented Programming Model

• Operate directly on tensors of arbitrary size

• Tensor expressions must be in the form of slicings with explicit upper bound

• User specifies the properties, e.g. parallelism, for each dimension, e.g. :N

89

:N is the name of the dimension

“parallel,block(BN)” is the property of the 

dimension



Performance improvement over DaCe by category

• Stencil 
• Tie with DaCe except for jacobi_1d where 

appy is ~5x slower

• Linear algebra (loop-based)
• ~5x faster than DaCe
• syrk, syr2k, spmv etc

• Solver
• trisolv, cholesky
• 2x and 12x faster than DaCe respectively

• Machine learning
• Softmax
• ~5x faster than DaCe
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Device code

Only one thread executes in a thread block

DaCe code generation 
for go_fast

i loop is sequential

Host code



APPy code generation 
for go_fast
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Indicates parallel reduction
Host code

Device code: parallel reduction

Also only one thread is used though

13x faster than DaCe-GPU!

i loop is parallel

N thread blocks are launched



DaCe code 
generation for syrk
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Kernel launch code: thread 

block size is fixed to 32

Device code
slice :i+1 is sequential

Host code



APPy code 
generation for syrk
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M thread blocks launched

Thread block size is 128

Device code

4x faster than DaCe-GPU!

slice :i+1 is parallelized

On top of that, an optimization (loop 

elimination) is applied for small slices

Host code



• On top of parallelization, the compiler also performs
• Loop fusion

• Loop tiling (via pragma)

95

Automatic compiler optimizations



Loop fusion case study: gesummv

• Memory footprint without fusion
• T = alpha * A[:M, :N]

• One load, one store of MxN matrix

• mv(T, x)

• One load of MxN matrix

• Memory footprint with fusion
• One load of MxN matrix

• ~3x speedup over CuPy is possible in 
principle!

• Achieved speedup in practice: 2.5x
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The final APPy code after automatic fusion

• Memory footprint without fusion
• T = alpha * A[:M, :N]

• One load, one store of MxN matrix

• mv(T, x)

• One load of MxN matrix

• With fusion
• One load of MxN matrix

• ~3x speedup over CuPy is possible in 
principle!

• Achieved speedup in practice: 2.5x

97

Data is on-chip, perform two operations in a row



Loop fusion case study: floyd_warshall

• Memory footprint without fusion
• Add.outer

• One store of MxN matrix

• Minimum

• Two loads and one store of MxN matrix

• Assign

• One load and one store

• Memory footprint with fusion
• One load and one store of MxN matrix

• Theoretical max speedup over CuPy: 3x

• Actual achieved speedup: 3.3x
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Loop tiling case study: covariance

99

A vector-matrix multiplication

Different rows (i:M) reuse the vector



Loop tiling case study: covariance

• Without blocking i:M
• Runtime: 30ms

• With blocking i:M (block size is 2)
• Runtime: 16ms

100

A vector-matrix multiplication

Different rows (i:M) reuse the vector

• Blocking the i:M dimension enhances 
register reuse

• data[:float_n, i] gets reused

• Equivalent to loop unrolling here

Block size (tiling factor)



Loop tiling case study: floyd_warshall and gesummv

• Runtime of floyd_warshall
• Without blocking

• Runtime: 29ms

• With blocking (block size is 2)

• Runtime: 28ms

• Runtime of gesummv
• Without blocking

• 3ms

• With blocking (block size is 2)

• 3ms
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Blocking is not helping much here, finer grain 

performance analysis is needed to diagnose why. 



Evaluation

• Programmability evaluation

• Performance evaluation

102



Programmability evaluation

• Original program structure is kept as 
much as possible

• We try to only add pragmas, and only 
change the program structure when 
necessary

• Programming model adoption stats
• Use vanilla model only

• 3/19

• Use tensor expressions only
• 8/19

• Use loop + tensor expressions 
• 8/19

• The only benchmarks that had code 
adaptations besides annotations

• Softmax

• Spmv

• Azimint_naive

• Other conventions
• Parallel for loops must be a range loop

• The result of parallel reduction must be 
an array, even if size is 1
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Typical stencil kernel: heat_3d

104

One kernel launch per 

annotated tensor expression



Typical loop-based kernel: covariance

105

One kernel launch per 

parallel loop



Vanilla programming model alone

• Sometimes we use the vanilla model alone if more flexibility is needed, such 
as in spmv and azimint_naive

106

spmv azimint_naive



Comparison of the two programming models

• Block-oriented model

• Compose programs using loops + 
blocked tensor operations, only work 
with a small chunk of data at a time

• High flexibility

• Low productivity

• Tensor-oriented model

• Compose programs using tensor 
expressions, annotate each individual 
dimension as parallel or not

• Low flexibility

• High productivity
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• Correctness condition: there must exist a __syncthreads() between any pair of 
memory operations that have data dependence

• A simple implementation: Insert a __syncthreads() after every memory load and 
store, except for tensors that are only ever loaded

108

Memory consistency model implementation



• Tensor expressions are “regular” operations so some extraneous thread 
synchronizations can be skipped

• Only necessary to insert one __syncthreads() before and after the loop, not within

109

Synchronization optimization



Some constraints

• Multi-dimensional tensor expression is fine

• Each dimension must be uniquely named

• Every dimension must have an entry in the pragma

• A reduction dimension must be specified in the pragma

110

Two dimensions 

:M and :N



Storage implication

• Arrays
• Global memory

• Data block (variable)
• On-chip storage, e.g. registers

111

vi = range(i, min(i+BN, N)) 

Equivalent to 



Loop tiling case study: covariance

• Blocking the i:M dimension enhances 
register reuse

• data[:float_n, i] gets reused

• Equivalent to loop unrolling here

• Without blocking i:M
• Runtime: 30ms

• With blocking i:M (block size is 2)
• Runtime: 16ms

112

Register reuse achieved. Each thread handles two 

elements from the i:M dimension



ReACT backup

113



• It uses a tree-based intermediate representation (IR), and transforms the IR with 
redundancies-aware transformation passes (fully automatic)

• A pass to perform partial fusion thus to reduce type 1 and 2 redundancy

• A pass to reduce the intermediate storages to minimal sizes to reduce type 3 redundancy

• …

• Let’s look at some performance numbers before getting into how ReACT 
generates code with less redundancies
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How is ReACT able to reduce more redundancies?



Sparse-softmax N=16384
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Redundancy-Aware fusion via index tree

• Two operations => create two subtrees
• 𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘 ∗ 𝐶𝑘ℎ (sparse-dense MM, B is CSR format)

• 𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ ∗ 𝐷ℎ𝑗 (dense MM)

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dependence edge116



SpMM-MM index trees

• Annotate each index node as “Dense” or “Sparse”

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Dense

117



Index tree corresponding loop structure

• k is a sparse (compressed) loop while i and h are dense loops.

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗
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Sparse



• Library approach
• No fusion

• TACO (a SOTA sparse tensor compiler)
• Maximal fusion

• ReACT (our work)
• Partial fusion
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Redundancy-Aware fusion using index tree



SpMM-MM index trees: no fusion

• Time: Good, 𝑂(𝑁𝑁𝑍𝐵 ∗ 𝑁𝐻 + 𝑁𝐼 ∗ 𝑁𝐻 ∗ 𝑁𝐽)

• Intermediate space: Poor, 𝑂(𝑁𝐼 ∗ 𝑁𝐻)

• Locality: Poor

𝑖

𝑘

ℎ

𝑆0:  𝑇𝑖ℎ = 𝐵𝑖𝑘𝐶𝑘ℎ

𝑖

ℎ

𝑗

𝑆1:  𝐴𝑖𝑗 = 𝑇𝑖ℎ𝐷ℎ𝑗

Dense

Sparse

Dense

Dense

Dense

Dense
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Future work

• More optimizations
• LICM is applicable for some benchmarks, 

such as syrk and covariance

• More autotuning
• Now num_warps is fixed to 4 (128 

threads), not always optimal

• Automatically add/search pragmas
• Some pragmas may be inferred

• Fuse across tensor expressions

• Support multi-node distributed 
memory parallelism
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Intrepydd backup
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Code Optimization: Array Memory Recycling

1. it = 0
2. while it < max_iter:
3.   A = B + C   # all arrays
4.   …
5.   it += 1

Intrepydd source code Transformed code

1. A = empty_like(B) 
2. while it < max_iter: 
3.     add(B, C, out=A)
4.     …
5.     it += 1
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Code Optimization: Array Memory Recycling

1. it = 0
2. while it < max_iter:
3.   A = B + C   # all arrays
4.   …
5.   it += 1

Intrepydd source code Transformed code

1. A = empty_like(B) 
2. while it < max_iter: 
3.     add(B, C, out=A)
4.     …
5.     it += 1
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This also reduces reference counting management overhead 



Code Optimization: Array Memory Recycling

• At an allocation site, and determine
whose memory can be reused

• A variable’s memory can only be reused if
• It is a unique pointer of its memory
• It is dead at this point
• Namely, in the unique pointer set, but not in

alive set

• Requires two data flow analysis: liveness
analysis and unique-pointer analysis

• A unique pointer set per program point

• Non-Aliasing-Creating statements:
• Binary op
• Unary op
• All others are considered alias creating
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