High-level Compiler Optimizations for Python Programs

Tong Zhou

Committee: Vivek Sarkar, Jun Shirako, Tushar Krishna, Santosh Pande, Rich Vuduc

Python is the most popular programming language today (according to the PyPL index)

<https://pypl.github.io/PYPL.html> "The PYPL PopularitY of Programming Language Index is created by analyzing how often language tutorials are searched on Google."

Python is also widely used in scientific computing and data science

python-in-science?slide=32

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-
https://towardsdatascience.com/which-programming-language-should-data-scientists-learn-first-aac4d3fd3038

Python's rich ecosystem for scientific computing

https://speakerdeck.com/jakevdp/the-state-of-the-stack-scipy-2015-keynote

But, isn't Python slow?

But, isn't Python slow?

Python is great for HPC with better compilers!

Thesis statement

Compilers that are aware of high-level operator and loop semantics can deliver improved performance for Python programs on CPUs and GPUs relative to past work

Thesis contributions

- APPy: Annotated Parallelism for Python on GPUs
	- [CC24] Parallelize Python loops and tensor expressions on GPUs
- ReACT: Redundancy-Aware Code Generation for Tensor Expressions
	- [PACT22] Redundancy elimination when fusing sparse/dense tensor operators
- Intrepydd: Performance, Productivity, and Portability for Data Science Application Kernels
	- [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

Thesis contributions

- APPy: Annotated Parallelism for Python on GPUs
	- [CC24] Parallelize Python loops and tensor expressions on GPUs
- ReACT: Redundancy-Aware Code Generation for Tensor Expressions
	- [PACT22] Redundancy elimination when fusing sparse/dense tensor operators
- Intrepydd: Performance, Productivity, and Portability for Data Science Application Kernels
	- [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

Motivation for APPy

- Scientific Python programs can often benefit from using a GPU
- Two common approaches for GPU acceleration in Python
	- Library-based accelerations (e.g. CuPy), but many programs cannot be expressed using predefined operators alone
	- Creating custom CUDA/OpenCL kernels is challenging and time-consuming to get correctness and high performance
- Our solution (APPy)
	- Users write regular sequential Python code + annotate with simple pragmas
	- The compiler automatically generates GPU kernels from it

Abstract machine model: a multi-vector processor

Support atomic update to memory locations

APPy compiler directives

• Annotations for loops

- #pragma parallel for
- #pragma parallel for single
- #pragma simd
- Annotations for statements
	- #pragma atomic
- Annotations for tensor expressions
	- #pragma {dim}=>{properties}
- Difference from OpenMP codegen
	- OpenMP directly exposes the parallelism hierarchy of the GPUs and requires more complicated pragmas to generate GPU code
	- OpenMP does not recognize and compile tensor expressions

Vector addition with APPy

Software

- 1. @appy.jit
- 2. def vector_add(a, b, c, N):
- 3. #pragma parallel for
- 4. for i in range(N):
- 5. $c[i] = a[i] + b[i]$

 $i = 0$ $i = 1$ $i = 2$

Utilize both layers of parallelism: parallel for + simd

N workers launched N / MVL workers launched

- 1. @appy.jit
- 2. def vector_add(a, b, c, N):
- 3. #pragma parallel for **simd**
- 4. for i in range(N):
- 5. $C[i] = a[i] + b[i]$

1. @appy.jit

- 2. def vector_add(a, b, c, N):
- 3. #pragma parallel for
- 4. for i in range(N):
- 5. $C[i] = a[i] + b[i]$

Utilize both layers of parallelism: parallel for + simd

- 1. @appy.jit
- 2. def vector $add(a, b, c, N)$:
- 3. #pragma parallel for
- 4. for i in range(N):
- 5. $C[i] = a[i] + b[i]$

Performance boost!

N workers launched N / MVL workers launched

- 1. @appy.jit
- 2. def vector_add(a, b, c, N):
- 3. #pragma parallel for **simd**
- 4. for i in range(N):
- 5. $C[i] = a[i] + b[i]$

- 1. @appy.jit
- 2. def $generated(a, b, c, N)$:
- 3. #pragma parallel for
- 4. for i in range(0, N, MVL):
- 5. $c[i:i+MVL] = ...$

APPy allows you to use both loops and tensor expressions

Using loops is flexible, but sometimes it can be verbose …

Tensor operators can be more natural if applicable

Code simplified with tensor expressions

- 1. @appy.jit
- 2. def softmax_loop_oriented(a, b, M, N):
- 3. #pragma parallel for
- 4. for i in range(M):
- 5. $m = \text{float}('-inf')$
- 6. #pragma simd
- 7. for j in range(N):
- 8. $m = maximum(m, a[i, j])$
- 9. $s = 0.0$
- 10. #pragma simd
- 11. for j in range(N):
- 12. $s == exp(a[i, j] m)$
- 13. #pragma simd
- 14. for j in range(N):
- 15. **b**[i,j] = $exp(a[i,j] m) / s$

- 1. @appy.jit(auto_simd=True)
- 2. def softmax tensor oriented(a, b, M, N):
- 3. #pragma parallel for
- 4. for i in range(M):
- 5. $m = max(a[i, : N])$
- 6. $s = sum(exp(a[i,:N] m))$
- 7. $b[i,N] = exp(a[i,N] m) / s$

The compiler automatically converts these tensor expressions into loops with operator fusion

Tensor-Oriented model

• Allows operating directly on tensors of arbitrary size as a whole

- Tensor expressions need to be in the form of *sliced index notation*
	- C[:M, :N] = A[:M, :N] + B[:M, :N]
	- B[:M] = sum(A[:M, :N], axis=1)
	- $A[:M, :N] = B[:M, \text{None}] + C[\text{None}, :N]$
	- B[1:M-1, 1:N-1] = $0.2 * (A[1:M-1, 1:N-1] + A[1:M-1, N-2] + A[1:M-1, 2:N] + ...)$
- Dimensions need to be annotated using syntax low:up=>prop1,prop2, …
	- Supported properties
		- Parallel, simd, reduction, le (small dimension optimization)
- More automatic compiler optimizations
	- Operator fusion
	- Synchronization reduction

Matrix vector multiplication using tensor expressions

- Loop order is determined by the order of the dimensions from left to right in the pragma
- The last dimension is automatically strip-mined with Option auto simd=True
- The optimal value of appy.MVL is automatically tuned from a list of common choices
- 1. @appy.jit(auto_simd=True)
- 2. def mv(alpha, A, x):
- $3.$ M, $N = A.$ shape
- 4. #pragma :M=>parallel :N=>reduction(sum:y)
- 5. $y[:M] = mv(alpha * A[:M, :N], x[:N])$

- 1. @appy.jit
- 2. def mv_generated(alpha, A, x):
- $3.$ M, $N = A.$ shape
- 4. #pragma parallel for
- 5. $\frac{1}{2}$ for $\frac{1}{2}$ i0 in range(0, M, 1):
- 6. $y[i0] = 0.0$
- 7. for $\vert i1 \vert$ in range(0, N, appy. MVL):
- 8. $v1 =$ appy.vidx($[i1,$ appy.MVL, N)
- 9. $y[~i0]$ += sum(alpha * A[_i0, _v1] * x[_v1])

Compiler generated

Map an APPy worker to GPU execution

- Mapping each worker to a thread block is more flexible, but their execution models don't match
	- APPy worker: statements execute sequentially
	- Thread block: multiple warps can execute asynchronously
- Solution: compiler automatically inserts thread synchronizations after memory operations to handle cross-thread dependence
	- Optimization 1: synchronizations are unnecessary if within loops generated from tensor expressions due to their regular computations
	- Optimization 2: if a tensor being written is never read in any other statements, then it cannot have data dependence with any other memory reads

Implementation

• All transformation passes are Python AST based

Performance evaluation

- CPU: Ryzen 7 5800X
	- 8 cores
	- Cache sizes
		- L1: 32K, L2: 512K, L3: 32M
- GPU: RTX 3090
	- 10496 cuda cores, 82 SMs
	- Cache sizes
		- L1: 128K, L2: 6M
- Benchmarking methodology
	- Each benchmark is run 10 times and report median
	- Each benchmark run is \sim 1 second
- Comparisons
	- NumPy (CPU library), CuPy (GPU library)
	- Numba (SOTA CPU compiler), JAX (SOTA JIT compiler with GPU backend), DaCe-GPU (SOTA GPU compiler)
- 20 kernels
	- azimint_naive
	- cholesky
	- covariance
	- fdtd_2d
	- floyd_warshall
	- gemm
	- gemver
	- gesummv
	- go_fast
	- gramschmidt
	- heat_3d
	- jacobi_1d
	- jacobi_2d
	- softmax
	- spmv
	- symm
	- syr₂k
	- syrk
	- trisolv
	- trmm

Performance results

• NumPy

- Rightmost column shows absolute runtime
- Other frameworks: speedups/slowdown relative to **NumPy**
	- Acknowledgment: visualization script from npbench (ETH)
	- Up arrow indicates speedup (from light green to dark green)
	- Down arrow indicates slowdown (from orange to red)
- Summary of Appy's performance (geometric means)
	- 30x speedup over NumPy
	- 8.3x speedup over Numba
	- 30x speedup over CuPy
	- 18.8x speedup over JAX (with JIT)
	- 3.1x speedup over DaCe-GPU

This

Faster than DaCe due to some patterns are parallelized with APPy but sequentialized by DaCe

Faster than DaCe due to small dimension optimization in APPy (cached in registers)

Faster than DaCe due to APPy generates fused code while DaCe does not

Now show a code example: spmv

Sparse matrix dense vector multiplication (SpMV)

CuPy version

- 1. def spmv(A_row, A_col, A_val, x):
- 2. $N = A$ row.shape[0]
- 3. $y = empty([N 1], dtype = A value$ val.dtype)
- 4. for i in range(N 1):
- 5. cols = A_col[A_row[i]:A_row[i + 1]]
- 6. vals = A_val[A_row[i]:A_row[i + 1]]
- 7. $y[i] = dot(vals, x[cols])$
- 8. return y

APPy version

10557x speedup! ¹

- 1. @appy.jit
- 2. def spmv(A_row, A_col, A_val, x):
- 3. $N = A$ row.shape[0]
- 4. $y = empty([N 1], dtype = A_value value)$
- 5. #pragma parallel for
- 6. for i in range $(N-1)$:
- 7. $y[i] = 0.0$
- 8. #pragna simd
- 9. for j in range(A row[i], A row[1+i]):
- 10. cols \neq A col[j]
- 11. $y[i] + 2A \text{ val}[i] * x[cols]$
- 12. return y

Dynamic loop bounds are fine with #pragma simd

More results explanation

- Why faster than JAX (with JIT)?
	- Parallelizable loops are parallelized by APPy but sequentialized by JAX
	- APPy fuses some operator sequence pattern that's not fused by JAX
- Why faster than CuPy?
	- Loop-based CuPy kernels run the loops sequentially in the Python interpreter while APPy runs them in parallel in native code
	- Operator-based CuPy kernels have memory inefficiency due to the need to materialize intermediate results for a sequence of operators while APPy does operator fusion
- Why faster than NumPy/Numba?
	- GPUs are known to be more efficient than CPUs for data parallel applications

APPy summary

- We present APPy, a Python-based programming model and compiler that allows users to parallelize sequential Python code on GPUs using compiler directives
- We present the design of a loop-oriented programming model and a tensororiented programming model, and their implementations, including code generation and automatic compiler optimizations
- We evaluate the performance of APPy using 20 kernels from scientific computing and demonstrate significant speedup over CuPy (30× on average), JAX (18.8× on average), and DaCe-GPU (3.1× on average)

Thesis contributions

- APPy: Annotated Parallelism for Python on GPUs • [CC24] Parallelize Python loops and tensor expressions on GPUs
- ReACT: Redundancy-Aware Code Generation for Tensor Expressions
	- [PACT22] Redundancy elimination when fusing sparse/dense tensor operators
	- Intrepydd: Performance, Productivity, and Portability for Data Science Application Kernels
		- [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

Problem statement: desired input and output

• Desired input: operator program in Python (can be sparse)

```
def sddmm(sp_A, B, C):
1
       return sp_A * (B @ C)2
3
   def spmm_mm(sp_A, B, C):
4
5
       return sp_A @ (B @ C)6
   def norm_{row}(sp_A):7
8
       return sp_A / sum(sp_A, axis=1)
```
• Desired output: fused CPU kernel with reduced redundant memory accesses and computations

lech.

Limitations with State-of-the-art

• TACO

- A code generator for arbitrary sparse/dense tensor algebra expressions
- **maximal fusion** is implicit during code generation
- Limitations
	- Maximal fusion may introduce some types of redundant memory accesses and computations
	- Maximal fusion cannot properly fuse certain reduction expressions

Maximal fusion does not work because it requires the "/" operator to be distributive over a summation

Redundancy types identified

- **Type 1** (Reduction Redundancy): When multiple multiply-add operations are performed instead of multiple adds followed by a single multiply (distributive law).
- **Type 2** (Loop-Invariant Redundancy): When a loop invariant expression is introduced (could be invariant in a non-innermost loop) due to maximum fusion.
- **Type 3** (Load-Store Redundancy): When some values are stored and loaded in separate loops, and the loads/stores can be eliminated after fusion --- a classical benefit of loop fusion.
- **Type 4** (Dead-Value Redundancy): When some values are computed but not used later on (e.g., when multiplying with 0s in a sparse tensor) --- another classical benefit of loop fusion.

(Type 1) Reduction redundancy

Input: $c = b * sum(A, axis=1)$

With redundancy (due to maximal fusion) Mithout redundancy

- 1. for (int i = 0; i < NI; i++) {
- 2. double $s = 0$;
- 3. double bi = $b[i]$;
- 4. for (int j = 0; j < NJ; j++) {
- 5. $s = A[i,j] * bi;$
- 6. ...
- 7. }
- 8. ...
- 9. }
- 1. for $(int i = 0; i < NI; i++)$ {
- 2. double $s = 0$;
- 3. for (int j = 0; j < NJ; j++) {
- 4. $s = A[i,j]$;
- 5. ...
- 6. }
- 7. $s = s * B[i];$
- 8. ... 9. }

Reduced number of multiplications in the innermost loop!

(Type 2) Loop-Invariant redundancy

Input: $A = (B + E) * (C \omega D)$

With redundancy (due to maximal fusion) Mithout redundancy

1. for $(int i = 0; i < NI; i++)$

- 2. for $(int k = 0; k < NK; k++)$
- 3. for (int $j = 0$; $j < NJ$; $j++)$
- 4. $A[i,j]$ += $(B[i,j] + E[i,j])$ * \ $(C[i,k]$ * $D[k,j])$;

- 1. double^{*} $T = new double[NJ];$
- 2. for $(int i = 0; i < NI; i++)$ {
- 3. for (int $j = 0$; $j < NJ$; $j++)$ {
- 4. $T[j] = B[i,j] + E[i,j]$;
- $5₁$
- 6. for (int k = 0; k < NK; k++) {
- 7. for (int j = 0; j < NJ; j++) {
- 8. $A[i,j]$ += $T[j]$ * $(C[i,k]$ * $D[k,j])$;
- 9. }
- 10. }
- 11. }

(Type 3) Load-Store redundancy

Input: $s = sum(A, axis=1); B = A / s[:, None]$

With redundancy (due to no fusion) Mithout redundancy without redundancy

- 1. double* $s = new double[N1]$;
- 2. // Operator 1
- 3. for $(int i = 0; i < NI; i++)$ {
- 4. $s[i] = 0;$
- 5. for (int $j = 0$; $j < NJ$; $j++)$ {
- 6. $S[i] += A[i, j];$
- $7₁$
- 8. }
- 9. // Operator 2
- 10. for (int i = 0; i < NI; i++) {
- 11. for (int j = 0; j < NJ; j++) {
- 12. $B[i,j] = A[i,j] / S[i];$
- 13. }
- 14. }

A[i,j] and s[i] now have reduced reuse distance, which leads to better locality!

1. // Operator 1 and 2 fused 2. for $(int i = 0; i < NI; i++)$ { 3. double $s = 0$; 4. for (int j = 0; j < NJ; j++) { 5. $s \div A[i,j];$ 6. } 7. 8. for (int j = 0; j < NJ; j++) { 9. $B[i,j] = A[i,j]/s;$ 10. } 11. }

(Type 4) Dead-Value redundancy

Input: $B = where(A < 0, alpha * A, A)$

With redundancy (due to no fusion) Mithout redundancy without redundancy

- 1. // Operator 1
- 2. double* tmp = new double[NI];
- 3. for (int i = 0; i < NI; i++) {
- 4. $tmp[i] = alpha * A[i];$
- 5. } Not all values in array tmp are useful!
- 6. // Operator 2
- 7. for $(int i = 0; i < NI; i++)$ {
- 8. if $(A[i] < 0)$ {
- 9. $B[i] = \text{tmp}[i];$
- 10. }
- 11. else {
- 12. $B[i] = A[i];$
- 13. }
- 14. }

- 1. // Operator 1 and 2 fused
- 2. for (int i = 0; i < NI; i++) {
- 3. if $(A[i] < 0)$ {
- 4. $B[i] = alpha * A[i];$
- $5₁$
- 6. else {
- 7. $B[i] = A[i];$
- 8. }
- 9. }

The use of tmp is now eliminated, which reduces redundant computations and memory accesses!

Redundancies eliminated by each approach

How is ReACT able to reduce these redundancies?

Transformation passes are redundancy-aware

Performance evaluation

- Test machine
	- 16-core Intel(R) Xeon(R) 2.20GHz CPU
	- OMP_NUM_THREADS is set to 16
- Kernels (all kernels have at least 2 operators)
	- SpMM-MM (sparse-dense matmul followed by dense matmul)
	- SDDMM/Masked MM (a dense matmul followed by a dense-sparse element-wise mul)
	- Sparse-softmax (row-wise softmax on a sparse matrix)
		- Expressed using basic operators such as exp, sum, divide etc
- Sparse matrices
	- A collection of real-world matrices from SuiteSparse
	- All sparse matrices are in CSR format
- Comparisons
	- ReACT (our approach)
	- TACO (SOTA compiler)
	- SciPy.sparse (SOTA library)

SpMM-MM results – 5.9x faster than TACO

(b) GNN-kernel1 (NH=256, NJ=16)

Code time complexity is reduced from $O(NNZ * NH * NJ)$ (TACO) $\mathbf{to} \ \mathcal{O}(N I * N H * N I)$ (ReACT)

"No" is good here!

43

SpMM-MM results – 5.7x faster than SciPy

(b) GNN-kernel1 (NH=256, NJ=16)

ReACT has better locality + more parallelism Note: SciPy uses only a single thread for its Sp implementation

SDDMM results – 1.5x faster than TACO

Both the amount of memory accesses and computations are reduced by eliminating type 1 redundancy. Georgia

(a) SDDMM (NK=64)

SDDMM results – 57.3x faster than SciPy

Many redundant computations are saved by eliminating type 4 (dead value) redundancies Georgia

(a) SDDMM (NK=64)

46

Sparse-softmax results – 2.0x faster than TACO

Sparse-softmax results – 23.5x faster than SciPy

Example: SpMM-MM

- Sparse-dense matmul followed by dense-dense matmul
	- Commonly used in graph neural networks
- Original input expression (sparse matrices are in red, assuming CSR format)
	- Python: $A = B \omega C \omega D$
- Transformations
	- Step 1: convert into *index notation* statements (each statement contains one operator)
		- $S_0: T_{ih} = B_{ik} \otimes C_{kh}$ (sparse-dense MM)
		- $S_1: A_{ij} = T_{ih} \otimes D_{hj}$ (dense-dense MM)
		- T_{ih} is compiler-generated temporary variable
	- Step 2: create an *index tree* from the index notation statements
		- Next slide

Index tree of SpMM-MM

- Two operations => create two subtrees
	- $S_0: T_{ih} = B_{ik} \otimes C_{kh}$
	- $S_1: A_{ij} = T_{ih} \otimes D_{hj}$

SpMM-MM index trees

• Annotate each index node as "Dense" or "Sparse"

Index tree corresponding loop structure

SpMM-MM index trees: TACO (maximal fusion)

- Time: Bad, $O(NNZ_B * NH * NJ)$
	- Due to type 1 and 2 redundancies
- Intermediate space: Great, $O(1)$
- Locality: Great

SpMM-MM index trees: TACO (maximal fusion)

Generated code

- 1. for (int i = 0; i < NI; i++) { 2. for (int $k = B$.rowptrs[i]; $k < B$.rowptrs[i+1]; $k++$) { 3. for (int $h = 0$; $h < NH$; $h++$) { 4. for $(int j = 0; j < NJ; j++)$ { 5. ... 6. // A[i, h] += B[i, k] * C[k, h] * D[h, j] 7. $A[i, h] += B.values[k] * C[Bs] * D[k], h] * D[h, j];$
- 8. ...
- 9. }
- 10. }
- 11. }
- 12. }

SpMM-MM index trees: ReACT (partial fusion)

- Time: Good, $O(NNZ_B * NH + NI * NH * NJ)$
	- Typically much smaller than $O(NNZ_B * NH * N)$
- Intermediate space: Good, $O(NH)$
	- After memory optimization
- Locality: Good

SpMM-MM index trees: ReACT (partial fusion)

Generated code

2. for (int $k = B$.rowptrs[i]; $k < B$.rowptrs[i+1]; $k++$) { 3. for (int $h = 0$; $h < NH$; $h++$) { 4. ... 5. $// T[i, h] += B[i, k] * C[k, h]$ 6. $T[h] \neq B.values[k] * C[B.close[k], h];$ 7. ... 8. } 9. } 10. for (int $h = 0$; $h < NH$; $h++$) { 11. for (int j = 0; j < NJ; j++) { 12. ... 13. // $A[i, h]$ += $T[i, h]$ * $D[h, j]$ 14. $A[i, h] += T[h] * D[h, j];$ 15. ... 16. } 17. $T[h] = 0;$ 18. }

1. for (int i = 0; i < NI; i++) {

19. }

56

ReACT summary

- We identify four common types of redundancies that can occur when generating code for a sequence of dense/sparse tensor operations
- We introduce ReACT, which consists of a set of redundancy-aware code generation techniques and can generate code with reduced redundancies
- Empirical evaluation on real-world applications such as SDDMM, GNN, Sparse-Softmax, and MTTKRP showed that our generated code with redundancy elimination resulted in 1.1× to orders-of-magnitude performance improvements relative to a state-of-the-art tensor algebra compiler (TACO) and library approaches such as scipy.sparse

Thesis contributions

- APPy: Annotated Parallelism for Python on GPUs • [CC24] Parallelize Python loops and tensor expressions on GPUs
- ReACT: Redundancy-Aware Code Generation for Tensor Expressions
	- [PACT22] Redundancy elimination when fusing sparse/dense tensor operators
- Intrepydd: Performance, Productivity, and Portability for Data Science Application Kernels
	- [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

Problem statement: desired input and output

• Desired input: whole kernel in Python (control flow is fine)

- 1. $it = 0$
- **2. while** it < max_iter:
- 3. $u = 1.0 / x$
- 4. $v = c * (1 / (K.T \omega u))$
- 5. $x = ((1 / r) * K) \omega v$
- 6. it $+= 1$

• Desired output: C++ code

Compilation Pipeline: From Intrepydd to C++

Intrepydd source code

1. def foo(xs: **Array**(double, 2)) -> double:

5. ...

...

- **2. for** i **in** range(**shape**(xs, 0)): **3. for** j **in** range(**shape**(xs, 1)):
- **4.** sum += xs[i, j]

Compilation Pipeline: From Intrepydd to C++

Intrepydd source code

Code Optimization

- High-level Optimizations in AOT compilation
	- Loop invariant code motion (LICM OPT)
	- Dense & Sparse Array Operator Fusion (Array OPT)
	- Array allocation and slicing optimization (Memory OPT)

Code Optimization: LICM

1. it = 0 **2. while** it < max_iter: 3. $u = 1.0 / x$ 4. $v = c * (1 / (K.T \omega u)) \# SDDMM$ 5. $x = ((1 / r) * K) \omega v$ 6. it $+= 1$

Intrepydd source code (Sinkhorn)

Transformed code

Code Optimization: Sparse Operator Fusion

Intrepydd source code (Sinkhorn)

Transformed code

Code Optimization: Dense Operator Fusion

Intrepydd source code (Sinkhorn)

Transformed code

Experimental Methodology

Benchmark Applications

- A subset of Python based data analytics applications from a recent DARPA program
- Mix of non-library call and library call dominated applications

Test machine

• Dual Intel Xeon Silver 4114 CPU @ 2.2GHz with 192GB of main memory and hyperthreading disabled

Comparisons

- Baseline idiomatic Python 3.7.6
- Cython
- Numba

Intrepydd Sequential Performance

Intrepydd offers 20.7x speedup on average (geomean) over baseline Python

Code Optimization

- High-level Optimizations in AOT compilation
	- Loop invariant code motion (LICM OPT)
	- Dense & Sparse Array Operator Fusion (Array OPT)
	- Array allocation and slicing optimization (Memory OPT)
- Impact on performance by each OPT

Intrepydd summary

- We present Intrepydd, a Python-based programming system, which is designed to enable data scientists to write application kernels with high performance, productivity, and portability
- We implement a number of high-level compiler optimizations during the compilation
- We evaluate the performance of Intrepydd using 6 data science kernels and show significant single-core performance improvements of Intrepydd relative to vanilla Python/NumPy (1.5× to 498.5×), Cython (1.5× to 47.5×) and Numba (1.7× to 38.1×)

Thank you!

- APPy: Annotated Parallelism for Python on GPUs
	- [CC24] Parallelize Python loops and tensor expressions on GPUs
- ReACT: Redundancy-Aware Code Generation for Tensor Expressions
	- [PACT22] Redundancy elimination when fusing sparse/dense tensor operators
- Intrepydd: Performance, Productivity, and Portability for Data Science Application Kernels
	- [Onward!20] Compile Python/NumPy to C++ with high-level optimizations

• Sparse matrix dense vector multiplication

```
10830x speedup over CuPy (loop-based)<sup>1</sup> 1.8x speedup over CuPy (operator only)<sup>1</sup>
@appy.jit
def spmv(A_row, A_col, A_val, x):
   N = A row.shape[0]y = \text{empty}([N - 1], \text{ dtype=A_val dtype)#pragma parallel for
    for i in range(N - 1):
        start = A_{row[i]}end = A row[1+i]y[i] = 0.0#pragma simd
        for j in range(start, end):
            cols = A col[i]y[i] += A_val[j] * x[cols]
    return y
```
Dynamic loop bounds are fine with #pragma simd

• Azimuthal integration, related to X-ray images

```
@appy.jit
def azimint_kernel(radius, r1, r2, data, data_sum, \
                   mask sum, N):
    #pragma parallel for simd
    for i in range(0, N):
        mask = (r1 \leq radius[i]). logical_and(radius[i] < r2)#pragma atomic
        data_sum[0] += torch.where(maxk, data[i], 0)#pragma atomic
        mask\_sum[0] += mask
```
Parallel reduction via atomic update

A stencil kernel "heat_3d" using tensor expressions

```
@appy.jit(dim_info={'A': ('M', 'N', 'K'), 'B': ('M', 'N', 'K')}, auto_simd=True)
                 def kernel(TSTEPS, A, B):
                                                                          Automatically append a simd
                     M, N, K = A.shape
                                                                          property to the last dimensionfor t in range(1, TSTEPS):
                         #pragma 1:M-1=>parallel 1:N-1=>parallel 1:K-1=>parallel
                         B[1:-1, 1:-1,1:-1] = (0.125 * (A[2:, 1:-1, 1:-1] - 2.0 * A[1:-1, 1:-1, 1:-1] +A[-2, 1:-1, 1:-1]) + 0.125 *(A[1:-1, 2:, 1:-1] - 2.0 * A[1:-1, 1:-1, 1:-1] +A[1:-1, -2, 1:-1]) + 0.125 *(A[1:-1, 1:-1, 2: ] - 2.0 * A[1:-1, 1:-1, 1:-1] +One kernel launch per 
                                         A[1:-1, 1:-1, 0:-2]) + A[1:-1, 1:-1, 1:-1])annotated tensor expression
                         #pragma 1:M-1=>parallel 1:N-1=>parallel 1:K-1=>parallel
                         A[1:-1, 1:-1,1:-1] = (0.125 \times (B[2:, 1:-1, 1:-1] - 2.0 \times B[1:-1, 1:-1, 1:-1] +B[:-2, 1:-1, 1:-1]) + 0.125 *(B[1:-1, 2:, 1:-1] - 2.0 * B[1:-1, 1:-1, 1:-1] +B[1:-1, -2, 1:-1]) + 0.125 *(B[1:-1, 1:-1, 2:] - 2.0 * B[1:-1, 1:-1, 1:-1] +B[1:-1, 1:-1, 0:-2]) + B[1:-1, 1:-1, 1:-1])return A, B
```
Utilize both layers of parallelism: parallel for + simd

@appy.jit def vector_add(a, b, c, N): #pragma parallel for for i in range(N): $c[i] = a[i] + b[i]$

@appy.jit def vector_add(a, b, c, N): #pragma parallel for **simd** for i in range(N): $c[i] = a[i] + b[i]$

Performance boost!

Sliced index notation (inspired by Einstein notation)

- Two steps
	- Define index variables (dimension size)
	- Create sliced index notations
- Examples (assume "M, $N = A$.shape")
	- Element-wise multiplication of A and B
		- C[:M, :N] = A[:M, :N] + B[:M, :N]
	- Row-wise summation of A
		- $B[:M] = sum(A[:M, :N], axis=1)$
	- Stencil pattern
		- B[1:M-1, 1:N-1] = 0.2 $*$ (A[1:M-1, 1:N-1] + $A[1:M-1, N-2] + A[1:M-1, 2:N] + ...$
	- Broadcast
		- $A[:M, :N] = B[:M, \text{None}] + C[\text{None}, :N]$
- Annotate each distinct dimension (slice) with a list of properties
	- :M=>parallel :N=>reduction(sum)
		- Indicate to the :M dimension should be processed in parallel and :N is a reduction dimension
	- 1:M-1=> parallel 1:N-1=>parallel
		- Indicate both dimensions should be processed in parallel

Abstract machine model: a multi-vector processor

Loop-Oriented model

Higher performance can be achieved by working with a block of data per iteration

Performance boost!

```
@appy.jit
def loop_{\text{1}} kernel(a, b, c, N, BN=256):
    #pragma parallel
    for i in range(0, N, BN):
        i = appy.vidx(i, BN, bound=N)
        c[i] = a[i] + b[i]
```

```
@appy.jit
def loop_{\text{general}}(a, b, c, N):
    #pragma parallel
    for i in range(N):
         c[i] = a[i] + b[i]
```


Loop-Oriented model

Higher performance can be achieved by working with a block of data per iteration

Performance boost!

```
@appy.jit
def loop_{\text{general}}(a, b, c, N):
    #pragma parallel
    for i in range(N):
         c[i] = a[i] + b[i]
```

```
@appy.jit
def loop_kernel(a, b, c, N, BN=256):
    #pragma parallel
    for i in range(\emptyset, N, BN):
        i = appy.vidx(i, BN, bound=N)
        c[i] = a[i] + b[i]
```
A built-in function that returns a "vector of indices", e.g. [i, i+1, i+2, …, i+BN-1]

• Sparse matrix dense vector multiplication

@jit

```
def spmv(A_row, A_col, A_val, x, Bj=128):
    N = A_{row}. shape [0]y = torch.empty([N - 1], dtype=A_val.dtype, device=A_val.device)
    #pragma parallel
    for i in range(N - 1):
        start = A_{row}[i]end = A row[1+i]y[i] = 0.0for j in range(start, end, Bj):
            vj = vidx(j, Bj, end)cols = A_{col}[vj]vals = A_val[vj]y[i] += torch.sum(vals * x[cols])
    return y
```
• Azimuthal integration, related to X-ray images

spmv azimint_naive

```
\texttt{(\text{dappy.}\texttt{jit}(\text{dump\_final\_apply=1})}def _kernel(radius, r1, r2, data, data_sum, mask_sum, N, BN=512):
    #pragma parallel
    for i in range(0, N, BN):
         i = appy.vidx(i, BN, N)
        mask = (r1 \le radius [i]). logical_and(radius [i] < r2)
        mask = mask.to(torch.float64)#pragma atomic
         data_sum[0] += torch.sum(data[i] * mask)#pragma atomic
         mask\_sum[0] += torch.sum(maxk)
```


• Sparse matrix dense vector multiplication

@jit

```
def spmv(A_row, A_col, A_val, x, Bj=128):
    N = A_{row}. shape [0]y = torch.empty([N - 1], dtype=A_val.dtype, device=A_val.device)
    #pragma parallel
    for i in range(N - 1):
        start = A_{row}[i]end = A row[1+i]v[i] = 0.0for j in range(start, end, Bj):
            vj = vidx(j, Bj, end)cols = A_{col}[vj]vals = A val[vj]
            v[i] += torch.sum(vals * x[cols])
    return y
```
Block size (Bj) must be a constant

• Azimuthal integration, related to X-ray images

spmv azimint naive

```
\texttt{(\text{dappy.}\texttt{jit}(\text{dump\_final\_apply=1})}def _kernel(radius, r1, r2, data, data_sum, mask_sum, N, BN=512):
    #pragma parallel
    for i in range(0, N, BN):
         i = appy.vidx(i, BN, N)
        mask = (r1 \le radius [i]). logical_and(radius [i] < r2)
        mask = mask.to(torch.float64)#pragma atomic
         data_sum[0] += torch.sum(data[i] * mask)#pragma atomic
         mask\_sum[0] += torch.sum(maxk)
```


• Sparse matrix dense vector multiplication

@jit

```
def spmv(A_row, A_col, A_val, x, Bj=128):
    N = A_{row}. shape [0]y = torch.empty([N - 1], dtype=A_val.dtype, device=A_val.device)
    #pragma parallel
    for i in range(N - 1):
        start = A_{row}[i]end = A row[1+i]v[i] = 0.0for j in range(start, end, Bj):
            vj = vidx(j, Bj, end)cols = A_{col}[vj]vals = A val[vj]
            v[i] += torch.sum(vals * x[cols])
    return y
```
Block size (Bj) must be a constant Indicates parallel reduction

• Azimuthal integration, related to X-ray images

spmv azimint naive

```
\texttt{(\text{dappy.}\texttt{jit}(\text{dump\_final\_apply=1})}def _kernel(radius, r1, r2, data, data_sum, mask_sum, N, BN=512):
    #pragma parallel
    for i in range(0, N, BN):
         i = appy.vidx(i, BN, N)
        mask = (r1 \le radius [i]). logical_and(radius [i] < r2)
         mask = mask_to(torch.float64)#pragma atomic
         data_sum[0] += torch.sum(data[i] * mask)#pragma atomic
         mask\_sum[0] += torch.sum(maxk)
```


Tensor expressions are inherently parallel

Tensor Oriented Programming Model

- Advantages
	- More concise
	- More automatic optimizations
		- Automatic loop fusion

Tensor Oriented Programming Model

- Advantages
	- More concise
	- More automatic optimizations
		- Automatic loop fusion
		- Automatic loop tiling (a simple form)

Example workflow for vector addition

```
13 @triton.autotune(
                                                                                                14
                                                                                                        config = [(eappy.jit(auto_block=True)
                                                                                                15
                                                                                                           triton.Config({"APPY_BLOCK": 1024}),
                                                                                                           triton.Config({"APPY_BLOCK": 512}),
                                                                                                16
              def kernel(a, b, c, N):
                                                                                                17
                                                                                                           triton.Config({"APPY_BLOCK": 256}),
                                                                                                18
                                                                                                           triton.Config({"APPY_BLOCK": 128}),
                     #pragma :N=>parallel
                                                                                                19
                                                                                                       1.
                                                                                                        key=["c_stride_0", "a_stride_0", "b_stride_0"],
                                                                                                20
                     c[:N] = a[:N] + b[:N]21)22 @triton.jit
                                                                                                    def _kernel0(N, c, c_stride_0, a, a_stride_0, b, b_stride_0, APPY_BLOCK: tl.constexpr):
                                                                                                23
                                                                                                24
                                                                                                        pass
                                                                                                        _top_var_0 = 0 + tl.program_id(0) * APPY_BLOCK
                                                                                                25
                                                                                                26
                                                                                                        tl.store(
          High level 
                                                                                                27
                                                                                                           c + (-top_0var_0 + t1.arange(0, APPY_BLOCK)) * 1,28
                                                                                                           tl.load(
      transformations29
                                                                                                               a + (-top_0var_0 + t1.arange(0, APPY_BLOCK)) * 1,30
                                                                                                               mask = \text{topvar_0 + t1.} \text{array}(0, APPY_BLOCK) < N,31
                                                                                                32
                                                                                                           + tl.load(
                                                                                                33
                                                                                                               b + (-top_0 \ar_0 + t1.\arange(0, APPY_BLOCK)) * 1,34
                                                                                                               mask = \text{topvar_0 + t1.} \text{arange(0, APPY_BLOCK) < N,}35
                                                                                                           \lambda.
@appy.jit(tune={'APPY_BLOCK': [128, 256, 512, 1024]})
                                                                                                36
                                                                                                           mask = \text{topvar_0 + t1.} \text{arange(0, APPY_BLOCK) < N,}def kernel(a, b, c, N):
                                                                                                37
                                                                                                38
     #pragma parallel
                                                                                                39
                                                                                                40
                                                                                                    def kernel(a, b, c, N):
     for _top_var_0 in range(0, N, APPY_BLOCK):
                                                                                                41
                                                                                                        kernel grid = lambda META: ((N - 0 + META["APPY BLock"] - 1) // META["APPY BLOCK"],
           top\varnothing = \text{vidx}(\text{topvar_0}, \text{APPY_BLOCK}, \text{N})42
                                                                                                        fn = \text{kernel0}[kernel grid](N, c, c.stride(0), a, a.stride(0), b, b.stride(0))
                                                                                                43
           c[\text{topvar_0}] = a[\text{topvar_0}] + b[\text{topvar_0}]Final code generation
```


"Loops + Slices": a simple and flexible programming model

- No prior GPU programming experience is required
- Two key pieces
	- Identify parallel loops
		- Can be nested
	- Process a slice of elements per loop iteration
		- Typically 1-2048 elements
- Performance optimizations are manual
	- Manual loop tiling, fusion etc

"Loops + Slices": two levels of parallelism

- No prior GPU programming experience is required
- Two levels of parallelism
	- Identify parallel loops
		- Loop iterations run in parallel
	- Process a slice of elements per loop iteration
		- Elements are processed in parallel
- Performance optimizations are manual
	- Manual loop tiling, fusion etc

Tensor Oriented Programming Model

- Operate directly on tensors of arbitrary size
- Tensor expressions must be in the form of slicings with explicit upper bound
- User specifies the properties, e.g. parallelism, for each dimension, e.g. :N

```
11
    @appy.jit
12
    def add(a, b, c, N, BN=128):
        #pragma : N=>parallel, block(BN)
13
        c[:N] = a[:N] + b[:N]14
```
:N is the name of the dimension "parallel,block(BN)" is the property of the dimension

```
@appy.jit
3
   def add(a, b, c, N, BN=128):
4
5
       #pragma parallel
6
       for i in range(0, N, BN):
           vi = appy.vidx(i, BN, bound=N)7
           c[vi] = a[vi] + b[vi]8
```


Performance improvement over DaCe by category

• Stencil

- Tie with DaCe except for jacobi_1d where appy is ~5x slower
- Linear algebra (loop-based)
	- ~5x faster than DaCe
	- syrk, syr2k, spmv etc
- Solver
	- trisolv, cholesky
	- 2x and 12x faster than DaCe respectively
- Machine learning
	- Softmax
	- ~5x faster than DaCe


```
Host codefor (i = 0; (i < N); i = (i + 1)) {
DaCe code generation 
                                                                DACE_GPU_CHECK(cudaMemcpyAsync(__state->__0__tmp1, a + ((N * i) + i), 1 * sizeof(double), \
for go_fast
                                                                    cudaMemcpyDeviceToDevice, state->qpu_context->streams[0]));
                                                                __dace_runkernel__numpy_tanh__gmap_0_1_6(__state, __state->__0__tmp1, __state->__0_trace);
                                                          _global_ void _launch_bounds_(32) _numpy_tanh_gmap_0_1_6(const double * _restrict_ _tmp1, double * _restric
                                                                int _{mmpy _{min}} and qmapi = (blockIdx.x * 32 + threadIdx.x);loop is sequential
                                                                if (\_numpy_tanh\_gmapi < 1) {
                                                                    double __ s1_n2__ out_n8IN___ out;
 @dc.program
                                                                       double \text{in1} = \text{tmp1[0]};
 def go_fast(a: d\vec{c}.float64[N, N]):
                                                                       double _out;
                                                                                              Only one thread executes in a thread block
      trace = 0.6///////////////////
      for i in range(N):
                                                                       // Tasklet code (_numpy_tanh_)
                                                                       out = tanh(\nin1);
            trace += np.tanh(a[i, i])///////////////////
      return a + trace\_s1_n2\_\_out_n8IN\_\_out = \_\_out;const double _in2 = _s1_n2 out n8IN out;
                                                                       double \text{in1} = \text{trace}[0];Device code
                                                                       double _out;
                                                                       ///////////////////
                                                                       // Tasklet code (augassign_13_8)
                                                                       _{out} = (in1 + _{in2};
                                                                       ///////////////////
                                                                       trace[0] = \underline{\hspace{2cm}}out;orgia
91
```
ICh.

APPy code generation for go_fast @triton.jit def [kernel0(N, trace, trace_stride_0, a, a_stride_0, a_stride_1): pass $i = 0 + t1$. program_id(0) $* 1$ Device code: parallel reduction tl.atomic_add(Also only one thread is used though trace + $0 * 1$, tl.math.tanh(tl.load(a + i * a_stride_0 + i * 1, mask=None)), mask=None, @appy.jit tl.debug_barrier() $def go_fast(a)$: $trace = torch.zeros(1, device=a. device, dtype=a. dtype)$ $N = a \cdot shape[0]$ i loop is parallel $def go fast(a):$ #pragma parallel N thread blocks are launched $N = a$. shape [0] for i in range (N) : #pragma atomic kernel_grid = lambda META: $((N - 0 + 1 - 1)$ // 1, $trace[0] += torch.tanh(a[i, i])$ $fn = \text{kernel0}$ [kernel_grid]($return a + trace$ N, trace, trace.stride(0), a, a.stride(0), a.stride(1), num_warps=4 Indicates parallel reduction return $a + trace$ Host code

13x faster than DaCe-GPU!

DaCe code generation for syrk

A: $dc.fload64[N, M])$:

 $C[i, i + 1]$ *= beta

for k in range (M) :

@dc.program

return C

for i in range (N) :

APPy code generation for syrk

```
@appy.jit
def kernel(alpha, beta, C, A):
```

```
M, N = A. shape # 1200, 1000
M, M = C.\,shape # 1200, 1200
alpha, beta = float(alpha), float(beta)
```

```
#pragma parallel
```

```
for i in range(M):
    #pragma :i+1=>block(2048), single_block
    C[i, i+1] *= beta
```

```
for k in range(N):
```
#pragma :i+1=>block(2048), single block

 $C[i, i+1]$ \blacksquare alpha \blacktriangleright A $\{i\}$ \blacktriangleright A $\{i\}$ \blacktriangleright A $\{i\}$ \blacktriangleright \blacksquare

return C

slice :i+1 is parallelized On top of that, an optimization (loop elimination) is applied for small slices

Automatic compiler optimizations

- On top of parallelization, the compiler also performs
	- Loop fusion
	- Loop tiling (via pragma)

Loop fusion case study: gesummv

- Memory footprint without fusion
	- $T = alpha * A[:M, :N]$
		- One load, one store of MxN matrix
	- $mv(T, x)$
		- One load of MxN matrix
- Memory footprint with fusion
	- One load of MxN matrix
	- ~3x speedup over CuPy is possible in principle!
	- Achieved speedup in practice: 2.5x

#pragma : M=>parallel, block(2) : N=>reduce(sum: y1) $y1[:M] = torch.mv(alpha * A[:M, :N], x[:N])$

The final APPy code after automatic fusion


```
#pragma : M=>parallel, block(2) : N=>reduce(sum:y1)
y1[:M] = torch.mv(alpha * A[:M, :N], x[:N])
```
Loop fusion case study: floyd_warshall

- Memory footprint without fusion
	- Add.outer
		- One store of MxN matrix
	- Minimum
		- Two loads and one store of MxN matrix
	- Assign
		- One load and one store
- Memory footprint with fusion
	- One load and one store of MxN matrix
	- Theoretical max speedup over CuPy: 3x
	- Actual achieved speedup: 3.3x

#pragma : M=>parallel, block(2) : N=>parallel path[:M, :N] = torch.minimum(path[:M, :N], path[:M, k][:,None] + path[k, :N][None, :])

Loop tiling case study: covariance

```
A vector-matrix multiplication
Different rows (i:M) reuse the vector
```

```
#pragma parallel
```
for i in range (M) :

#pragma i:M=>block(2) :float_n=>block(2048), in_reg

 $cov[i, i:M] = torch.sum(data[:float_n, i][:, None] * data[:float_n, i:M], axis=0)$

#pragma i: M=>block(256)

 $cov[i:M, i] = cov[i, i:M]$

Loop tiling case study: covariance

- Blocking the i:M dimension enhances register reuse
	- data[:float_n, i] gets reused
- Equivalent to loop unrolling here
- Without blocking i:M
	- Runtime: 30ms
- With blocking i:M (block size is 2)
	- Runtime: 16ms

Loop tiling case study: floyd_warshall and gesummv

• Runtime of floyd_warshall

- Without blocking
	- Runtime: 29ms
- With blocking (block size is 2)
	- Runtime: 28ms

• Runtime of gesummv

- Without blocking
	- 3ms
- With blocking (block size is 2)
	- 3ms

```
#pragma : M=>parallel, block(2) : N=>parallel
path[:M, :N] = torch.minimum(path[:M, :N], path[:M, k][:,None] + path[k, :N][None, :])
```
#pragma:M=>parallel,block(2):N=>reduce(sum:y1) $y1$ [:M] = torch.mv(alpha $*$ A[:M, :N], x[:N])

Blocking is not helping much here, finer grain performance analysis is needed to diagnose why.

Evaluation

- Programmability evaluation
- Performance evaluation

Programmability evaluation

- Original program structure is kept as much as possible
	- We try to only add pragmas, and only change the program structure when necessary
- Programming model adoption stats
	- Use vanilla model only
		- 3/19
	- Use tensor expressions only
		- 8/19
	- Use loop + tensor expressions
		- 8/19
- The only benchmarks that had code adaptations besides annotations
	- Softmax
	- Spmv
	- Azimint_naive
- Other conventions
	- Parallel for loops must be a range loop
	- The result of parallel reduction must be an array, even if size is 1

Typical stencil kernel: heat_3d

```
\text{Qappy.jit(dim_info=\{'A': ('M', 'N', 'K'), 'B': ('M', 'N', 'K')}, auto_block=True)}def kernel(TSTEPS, A, B):
                      M, N, K = A. shapefor t in range(1, TSTEPS):
                           #pragma 1:M-1=>parallel 1:N-1=>parallel 1:K-1=>parallel
                           B[1:-1, 1:-1,1:-1] = (0.125 * (A[2:, 1:-1, 1:-1] - 2.0 * A[1:-1, 1:-1, 1:-1] +A[-2, 1:-1, 1:-1]) + 0.125 *(A[1:-1, 2:, 1:-1] - 2.0 * A[1:-1, 1:-1, 1:-1] +A[1:-1, :-2, 1:-1]) + 0.125 *One kernel launch per 
                                       (A[1:-1, 1:-1, 2:] - 2.0 * A[1:-1, 1:-1, 1:-1] +A[1:-1, 1:-1, 0:-2]) + A[1:-1, 1:-1, 1:-1])
```
annotated tensor expression

```
#pragma 1:M-1=>parallel 1:N-1=>parallel 1:K-1=>parallel
   A[1:-1, 1:-1,1:-1] = (0.125 \times (B[2:1:-1, 1:-1] - 2.0 \times B[1:-1, 1:-1, 1:-1] +B[:-2, 1:-1, 1:-1]) + 0.125 *(B[1:-1, 2:, 1:-1] - 2.0 * B[1:-1, 1:-1, 1:-1] +B[1:-1, :-2, 1:-1]) + 0.125 *(B[1:-1, 1:-1, 2:] - 2.0 * B[1:-1, 1:-1, 1:-1] +B[1:-1, 1:-1, 0:-2]) + B[1:-1, 1:-1, 1:-1])return A, B
```


Typical loop-based kernel: covariance

```
#pragma parallel
for i in range(M):
    #pragma i:M=>block(2) :float_n=>block(2048), in_reg
    cov[i, i:M] = torch.sum(data[:float_n, i][:, None] * data[:float_n, i:M], axis=0)#pragma i: M=>block(256)
    cov[i:M, i] = cov[i, i:M]
```
One kernel launch per parallel loop

Vanilla programming model alone

• Sometimes we use the vanilla model alone if more flexibility is needed, such as in spmv and azimint_naive

@jit

```
def spmv(A_row, A_col, A_val, x, Bj=128):
    N = A_{row}. shape [0]y = torch.empty([N - 1], dtype=A_val.dtype, device=A_val.device)
    #pragma parallel
    for i in range(N - 1):
        start = A_{row}[i]end = A row[1+i]y[i] = 0.0for j in range(start, end, Bj):
            vj = vidx(j, Bj, end)cols = A_{col}[vj]vals = A val[vj]
            v[i] += torch.sum(vals * x[cols])
    return y
```
spmv azimint naive

```
\texttt{(\text{dappy.}\texttt{jit}(\text{dump\_final\_apply=1})}def _kernel(radius, r1, r2, data, data_sum, mask_sum, N, BN=512):
    #pragma parallel
    for i in range(0, N, BN):
         i = appy.vidx(i, BN, N)
        mask = (r1 \le radius [i]). logical_and(radius [i] < r2)
        mask = mask.to(torch.float64)#pragma atomic
         data_sum[0] += torch.sum(data[i] * mask)#pragma atomic
         mask\_sum[0] += torch.sum(maxk)
```


Comparison of the two programming models

- Block-oriented model
- Compose programs using loops + blocked tensor operations, only work with a small chunk of data at a time
- High flexibility
- Low productivity
- Tensor-oriented model
- Compose programs using tensor expressions, annotate each individual dimension as parallel or not
- Low flexibility
- High productivity

Memory consistency model implementation

- Correctness condition: there must exist a __syncthreads() between any pair of memory operations that have data dependence
- A simple implementation: Insert a _syncthreads() after every memory load and store, except for tensors that are only ever loaded
Synchronization optimization

- Tensor expressions are "regular" operations so some extraneous thread synchronizations can be skipped
- Only necessary to insert one _syncthreads() before and after the loop, not within

Some constraints

- Multi-dimensional tensor expression is fine
- Each dimension must be uniquely named
- Every dimension must have an entry in the pragma
- A reduction dimension must be specified in the pragma

```
#pragma :M=>parallel,block(2) :N=>reduce(sum:y1)
y1[:M] = torch.mv(alpha * A[:M, :N], x[:N])
```
Two dimensions :M and :N

Storage implication

- Arrays
	- Global memory
- Data block (variable)
	- On-chip storage, e.g. registers

Loop tiling case study: covariance

- Blocking the i:M dimension enhances register reuse
	- data[:float_n, i] gets reused
- Equivalent to loop unrolling here
- Without blocking i:M
	- Runtime: 30ms
- With blocking i:M (block size is 2)
	- Runtime: 16ms

```
Register reuse achieved. Each thread handles two 
                    elements from the i:M dimension#pragma parallel
for i in range(M):
   #pragma i:M=>block(2):float_n=>block(2048), in_reg
   cov[i, i:M] = torch.sum(data[:float_n, i][:, None] * data[:float_n, i:M], axis=0)#pragma i:M=>block(256)
   cov[i:M, i] = cov[i, i:M]
```


ReACT backup

How is ReACT able to reduce more redundancies?

- It uses a tree-based intermediate representation (IR), and transforms the IR with redundancies-aware transformation passes (fully automatic)
	- A pass to perform partial fusion thus to reduce type 1 and 2 redundancy
	- A pass to reduce the intermediate storages to minimal sizes to reduce type 3 redundancy
- Let's look at some performance numbers before getting into *how* ReACT generates code with less redundancies

 \bullet …

Sparse-softmax N=16384

115

Redundancy-Aware fusion via index tree

- Two operations => create two subtrees
	- $S_0: T_{ih} = B_{ik} * C_{kh}$ (sparse-dense MM, *B* is CSR format)
	- $S_1: A_{ij} = T_{ih} * D_{hj}$ (dense MM)

SpMM-MM index trees

• Annotate each index node as "Dense" or "Sparse"

Index tree corresponding loop structure

• k is a sparse (compressed) loop while i and h are dense loops.

Redundancy-Aware fusion using index tree

- Library approach
	- No fusion
- TACO (a SOTA sparse tensor compiler)
	- Maximal fusion
- ReACT (our work)
	- Partial fusion

SpMM-MM index trees: no fusion

- Time: Good, $O(NNZ_B * NH + NI * NH * NJ)$
- Intermediate space: Poor, $O(NI * NH)$
- Locality: Poor

Generated code (library calls)

Future work

• More optimizations

- LICM is applicable for some benchmarks, such as syrk and covariance
- More autotuning
	- Now num_warps is fixed to 4 (128) threads), not always optimal
- Automatically add/search pragmas
	- Some pragmas may be inferred
- Fuse across tensor expressions
- Support multi-node distributed memory parallelism

Intrepydd backup

Code Optimization: Array Memory Recycling

- 1. $A = empty_{\text{like}}(B)$
- **2. while** it < max_iter:
- **3. add(B, C, out=A)**
- **4.** … 5. it $+= 1$

Intrepydd source code Transformed code

Code Optimization: Array Memory Recycling

This also reduces reference counting management overhead

Intrepydd source code Transformed code

Code Optimization: Array Memory Recycling

- At an allocation site, and determine whose memory can be reused
- A variable's memory can only be reused if
	- It is a unique pointer of its memory
	- It is dead at this point
	- Namely, in the unique pointer set, but not in alive set
- Requires two data flow analysis: liveness analysis and unique-pointer analysis
	- A unique pointer set per program point
- Non-Aliasing-Creating statements:
	- Binary op
	- Unary op
	- All others are considered alias creating

