
Valence: Variable Length Calling Context
Encoding

Tong Zhou, Michael R. Jantz,
Prasad A. Kulkarni, Kshitij A. Doshi, Vivek Sarkar

Common Library Code

3

void append(List list) {
lock();
list.append(…);
unlock();

}Adam

Library code

Common Library Code

4

void append(List list) {
lock();
list.append(…);
unlock();

}Adam

Library code

Conservative

Common Library Code

5

void append(List list) {
lock();
list.append(…);
unlock();

}

void bob_call() {
lock();
append(globalList);
unlock();

}

Adam

Bob

Library code

User code

Common Library Code

6

void append(List list) {
lock();
list.append(…);
unlock();

}

void bob_call() {
lock();
append(globalList);
unlock();

}

Adam

Bob

Library code

User code

Common Library Code

7

void append(List list) {
lock();
list.append(…);
unlock();

}

void caleb_call() {
append(globalList);

}

Adam

Caleb

Library code

User code

Common Library Code

8

void append(List list) {
lock();
list.append(…);
unlock();

}

void caleb_call() {
append(globalList);

}

Adam

Caleb

Library code

User code

Everything is
thread-safe

Common Library Code

9

void append(List list) {
lock();
list.append(…);
unlock();

}

void caleb_call() {
append(globalList);

}

Adam

Caleb

Library code

User code

Common Library Code

• If we know the calling context where synchronization is
unnecessary, how do we fix it automatically?

10

After Code Transformation

11

void append(List list) {
if (call_from_caleb()) {
lock();
list.append(…);
unlock();

}
else {
list.append(…);

}
}

Calling context
detection

After Code Transformation

12

void append(List list) {
if (call_from_caleb()) {
lock();
list.append(…);
unlock();

}
else {
list.append(…);

}
}

Calling context
detection

Synchronization elided

Also Useful For …

13

Enhanced
Debugging

Anomaly
detection

Better memory layout

However…

• For the current state-of-the-art approach, precise calling context
checking could incur:
• > 8x slowdown when querying at every call site.

Why this slow? What’s the real problem behind it?

14

Traditional Approach PCCE

• Use a single integer (cc) to
encode all contexts
• Assign a unique number to

each static context
• Do integer addition and

subtraction on call and call
return

15

A

B J

D
E G

F

I
H

+1

+2

+4

+7

+2

Traditional Approach PCCE

16

A

B J

D
E G

F

I
H

+4

+2

+0

cc: 0

• Calling context: AJ
• cc: 0

Traditional Approach PCCE

• Calling context: AJG
• cc: 0 + 2 = 2

17

A

B J

D
E G

F

I
H

+4

+2

+0

cc: 2

Traditional Approach PCCE

• Calling context: AJGI
• cc: 2 + 4 = 6

18

A

B J

D
E G

F

I
H

+4

+2

+0

cc: 6

Problem 1

Massive amount of
distinct static calling
context for large code
base

Linux kernel =>

19

Problem 1

Massive amount of
distinct static calling
context for large code
base

Linux kernel =>

20

Contexts grow
exponentially

Problem 1

Massive amount of
distinct static calling
context for large code
base

Linux kernel =>

21

Contexts grow
exponentially

Statically encoding this
would overflow 64 bits !

PCCE Deals With Cycles

• Push tuple <current cc, GJ>
onto a stack
• Reset cc

22

A

B J

D
E G

F

I
H

+1

+2

+4

+7

+2

Back Edge

+0

Context: AJGI

• Context: AJGI

23

A

B J

D
E G

F

I
H

+4

+2

Back Edge

cc: 6

+0

Context: AJGIJ

• Context: AJGIJ

24

A

B J

D
E G

F

I
H

+4

+2

Back Edge
<6, IJ>
cc: 0

Problem 2

Need to save the entire acyclic
context on each back edge.

• Too much redundant leads to
inefficient querying

25

Problem 2

Need to save the entire acyclic
context on each back edge.

• Too much redundant leads to
inefficient querying

26

Redundancy
accumulates

Two Identified Problems

• Current approach
• > 8x slowdown when querying at every call site.

• Problem 1
• Unscalable encoding for the massive amount of static calling contexts.

• Problem 2
• Inefficient encoding for infinite amount of dynamic calling contexts.

27

Valence Solved Them All

• The most compact scalable precise calling context encoding
• Compared to the current state-of-the-art approach for SPEC

CPU2017 benchmarks. On average, Valence achieves
• > 60% space overhead reduction (from 4.3 to 1.6 64-bit words) for

storing calling contexts.
• > 70% time overhead reduction for querying calling contexts.

28 / 35

Table of Contents

• Overview
• Encode Acyclic Call Graphs
• Encode Call Graphs With Cycles
• Evaluation
• Conclusion

29

Solution To Scalability Problem

• Encode the context in a logical statically-sized bit vector.
• Naturally scalable

• Instrumentations
• Before the call: append a value to the bit vector
• After the call: pop out the value

30

Valence Acyclic Encoding

• Use a static bit vector to
encode all contexts
• Assign a unique bit pattern to

each static context
• Do bits appending and poping

on call and call return (logical)

31

A

B J

D
E G

F

I
H

←1

←10

←0001

←01

← : append a binary number

←1

Valence Acyclic Encoding

• Calling context: AJ
• cc: (nil)

32

A

B J

D
E G

F

I
H

←10

←01

cc:

← : append a binary number

Valence Acyclic Encoding

• Calling context: AJG
• cc: 01

33

A

B J

D
E G

F

I
H

←10

←01

cc: 01

← : append a binary number

Valence Acyclic Encoding

• Calling context: AJGI
• cc: 0110

34

A

B J

D
E G

F

I
H

←10

←01

cc: 01 10

← : append a binary number

Details Are In The Paper

• How do we statically determine what range in the bit vector to
update at each call site?
• How to ensure each bit pattern is unique?
• Check out the algorithms in the paper.

35

Table of Contents

• Overview
• Encode Acyclic Call Graphs
• Encode Call Graphs With Cycles
• Evaluation
• Conclusion

37

Solution To Cycle Problem

• Goal: to reduce encoding sizes and thus improve performance

• A different way to define cycle edges.
• First calculate the strongly-connected components (SCCs) of the

call graph.

38

A Call Graph With Cycles

• Back edges: HE, GJ

39

A

B J

D
E

G
F

I
H

A Call Graph With Cycles

• Five SCCs

40

A

B J

D
E

G
F

I
H

Cycle Edges

• SCC EFH and DGJ have edges
inside
• Cycle edges

• Only need to store these
edges for cycle encoding
• Store in a dynamic bit vector

41

A

B J

D
E

G
F

I
H

Cycle Encoding

42

A

B J

D
E

G
F

I
H

• Cyclic context: EF

cc: EF

Cycle Encoding

43

A

B J

D
E

G
F

I
H

• Cyclic context: EFH

cc: EF, FH

Cycle Encoding

44

A

B J

D
E

G
F

I
H

• Cyclic context: EFHE

cc: EF, FH

cc: EF, FH, HE

Instrument Acyclic Edges

• The SCCs form an acyclic
graph
• Use the previous acyclic

encoding scheme

46

A

B

EFH
I

DGJ

←1

←001
←11

←011
←01

Takeaways

• Encode call graphs without cycles
• Use a statically-sized bit vector
• Scale efficiently

• Encode cycles in the call graphs
• Use a separate dynamically-sized bit vector
• Space efficient

47

Table of Contents

• Overview
• Encode Acyclic Call Graphs
• Encode Call Graphs With Cycles
• Evaluation
• Conclusion

48

We Want To Know…

• Acyclic call graph
• how much more space Valence requires than PCCE?

• Cyclic call graph
• how much more compact Valence is?
• A more compact encoding makes querying more efficient (less memory traffic)

• Valence v.s. PCCE
• Instrumentation overhead
• Detection overhead

49

Evaluation

• Configurations
• Each encoding strategy (PCCE, Valence) is implemented as a LLVM pass.

• Hardware
• 3.30GHz Intel CPU and 16G DRAM.

• Benchmark
• SPEC CPU2017 C/C++ Benchmark suite.

50

Table of Contents

• Overview
• Encode Acyclic Call Graphs
• Encode Call Graphs With Cycles
• Evaluation
• Problem 2 Evaluation (cyclic call graphs)
• Problem 1 Evaluation (acyclic call graphs)

• Conclusion

51

Benchmark Static Characteristics

52

Benchmark Static Characteristics

53

Cycle problem

Benchmark Static Characteristics

54

At most 15 bits to
encode a cycle edge

Cyclic Encoding Cost Estimation

55

Benchmark PCCE (bits) Valence (bits) Valence/PCCE
gcc 1E+06 424950 34%
mcf 6 1 17%

cactusBSSN 1802 469 26%
parest 2656 1600 60%
povray 62913 28560 45%

xalancbmk 48932 17226 35%
x264 18 2 11%

deepsjeng 228 48 21%
imagick 18144 5240 29%
leela 378 115 30%
nab 450 125 28%
xz 126 90 71%

Geomean:
49%

Detection Overhead

56

Table of Contents

• Overview
• Encode Acyclic Call Graphs
• Encode Call Graphs With Cycles
• Evaluation
• Problem 2 Evaluation (cyclic call graphs)
• Problem 1 Evaluation (acyclic call graphs)

• Conclusion

58

Benchmark Static Characteristics

59

Benchmark Static Characteristics

60

PCCE Cannot operate
on 214-bit integer

efficiently

Benchmark Static Characteristics

61

Average Acyclic
Words

PCCE
1.21

Valence
1.29

Benchmark Static Characteristics

62

Average Acyclic
Words

PCCE
1.21

Valence
1.29

Low cost for
scalability!

Instrumentation Overhead

63

Table of Contents

• Overview
• Encode Acyclic Call Graphs
• Encode Call Graphs With Cycles
• Evaluation
• Conclusion

64

Conclusion & Future

•We presented Valence: a precise context encoding scheme that is
both scalable and low overhead to query.
• Overall, our approach reduces the length of calling context

encoding from 4.3 words to 1.6 words on average (> 60%
reduction), thereby improving the efficiency of applications that
frequently store or query calling contexts.
• See how Valence can enhance some program analysis and

software engineering fields.

66

Thank you! Questions?
Contact info: tz@gatech.edu

67

Back up slides

68

DeltaPath: A Scalable Version of PCCE

• Encode context using a list of <cc, anchor node> pairs
• Tuple list operation is difficult to implement efficiently
• Still inherits PCCE’s inefficient cycle encoding

69

DeltaPath: A Scalable Version of PCCE

• Divide the call graph into sub-graphs
• Each subgraph is encodable with PCCE

• Introduce the notion of “anchor node” as entry point for each
subgraph

70

DeltaPath: A Scalable Version of PCCE

71

