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Common Library Code
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Common Library Code

• If we know the calling context where synchronization is 
unnecessary, how do we fix it automatically?
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After Code Transformation
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After Code Transformation
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void append(List list) {
if (call_from_caleb()) {
lock();
list.append(…);
unlock();

}
else {
list.append(…);

}
}

Calling context 
detection
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Also Useful For …
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However…

• For the current state-of-the-art approach, precise calling context 
checking could incur:
• > 8x slowdown when querying at every call site.

Why this slow? What’s the real problem behind it?
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Traditional Approach PCCE

• Use a single integer (cc) to 
encode all contexts
• Assign a unique number to 

each static context
• Do integer addition and 

subtraction on call and call 
return
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Traditional Approach PCCE

• Calling context: AJG
• cc: 0 + 2 = 2

17

A

B J

D
E G

F

I
H

+4

+2

+0

cc: 2



Traditional Approach PCCE

• Calling context: AJGI
• cc: 2 + 4 = 6
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Problem 1

Massive amount of 
distinct static calling 
context for large code 
base

Linux kernel   =>
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Problem 1

Massive amount of 
distinct static calling 
context for large code 
base

Linux kernel   =>
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Contexts grow 
exponentially

Statically encoding this 
would overflow 64 bits !



PCCE Deals With Cycles

• Push tuple <current cc, GJ> 
onto a stack
• Reset cc
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Context: AJGI

• Context: AJGI
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Context: AJGIJ

• Context: AJGIJ
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Problem 2

Need to save the entire acyclic 
context on each back edge.

• Too much redundant leads to 
inefficient querying
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Problem 2

Need to save the entire acyclic 
context on each back edge.

• Too much redundant leads to 
inefficient querying
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Redundancy 
accumulates



Two Identified Problems

• Current approach
• > 8x slowdown when querying at every call site.

• Problem 1
• Unscalable encoding for the massive amount of static calling contexts.

• Problem 2
• Inefficient encoding for infinite amount of dynamic calling contexts.
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Valence Solved Them All

• The most compact scalable precise calling context encoding 
• Compared to the current state-of-the-art approach for SPEC 

CPU2017 benchmarks. On average, Valence achieves
• > 60% space overhead reduction (from 4.3 to 1.6 64-bit words) for 

storing calling contexts.
• > 70% time overhead reduction for querying calling contexts.
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Solution To Scalability Problem

• Encode the context in a logical statically-sized bit vector.
• Naturally scalable

• Instrumentations
• Before the call: append a value to the bit vector 
• After the call: pop out the value
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Valence Acyclic Encoding

• Use a static bit vector to 
encode all contexts
• Assign a unique bit pattern to 

each static context
• Do bits appending and poping

on call and call return (logical)
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Valence Acyclic Encoding

• Calling context: AJ
• cc: (nil)
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Valence Acyclic Encoding

• Calling context: AJG
• cc: 01
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Valence Acyclic Encoding

• Calling context: AJGI
• cc: 0110
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Details Are In The Paper

• How do we statically determine what range in the bit vector to 
update at each call site?
• How to ensure each bit pattern is unique?
• Check out the algorithms in the paper. 
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Solution To Cycle Problem

• Goal: to reduce encoding sizes and thus improve performance

• A different way to define cycle edges.
• First calculate the strongly-connected components (SCCs) of the 

call graph.
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A Call Graph With Cycles

• Back edges: HE, GJ
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A Call Graph With Cycles

• Five SCCs
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Cycle Edges

• SCC EFH and DGJ have edges 
inside
• Cycle edges

• Only need to store these 
edges for cycle encoding
• Store in a dynamic bit vector
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Cycle Encoding
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Cycle Encoding
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Cycle Encoding
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Instrument Acyclic Edges

• The SCCs form an acyclic 
graph
• Use the previous acyclic 

encoding scheme
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Takeaways

• Encode call graphs without cycles
• Use a statically-sized bit vector
• Scale efficiently

• Encode cycles in the call graphs
• Use a separate dynamically-sized bit vector
• Space efficient
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We Want To Know…

• Acyclic call graph
• how much more space Valence requires than PCCE?

• Cyclic call graph
• how much more compact Valence is?
• A more compact encoding makes querying more efficient (less memory traffic)

• Valence v.s. PCCE
• Instrumentation overhead
• Detection overhead
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Evaluation

• Configurations
• Each encoding strategy (PCCE, Valence) is implemented as a LLVM pass.

• Hardware
• 3.30GHz Intel CPU and 16G DRAM.

• Benchmark
• SPEC CPU2017 C/C++ Benchmark suite.
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Benchmark Static Characteristics
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Benchmark Static Characteristics
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Cycle problem



Benchmark Static Characteristics
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Cyclic Encoding Cost Estimation
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Benchmark PCCE (bits) Valence (bits) Valence/PCCE
gcc 1E+06 424950 34%
mcf 6 1 17%

cactusBSSN 1802 469 26%
parest 2656 1600 60%
povray 62913 28560 45%

xalancbmk 48932 17226 35%
x264 18 2 11%

deepsjeng 228 48 21%
imagick 18144 5240 29%
leela 378 115 30%
nab 450 125 28%
xz 126 90 71%

Geomean:
49%



Detection Overhead
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Benchmark Static Characteristics
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Benchmark Static Characteristics
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Benchmark Static Characteristics
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Instrumentation Overhead
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Conclusion & Future

•We presented Valence: a precise context encoding scheme that is 
both scalable and low overhead to query.
• Overall, our approach reduces the length of calling context 

encoding from 4.3 words to 1.6 words on average (> 60% 
reduction), thereby improving the efficiency of applications that 
frequently store or query calling contexts.
• See how Valence can enhance some program analysis and 

software engineering fields.
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Thank you! Questions?
Contact info: tz@gatech.edu
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Back up slides
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DeltaPath: A Scalable Version of PCCE

• Encode context using a list of <cc, anchor node> pairs
• Tuple list operation is difficult to implement efficiently
• Still inherits PCCE’s inefficient cycle encoding
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DeltaPath: A Scalable Version of PCCE

• Divide the call graph into sub-graphs
• Each subgraph is encodable with PCCE

• Introduce the notion of “anchor node” as entry point for each 
subgraph
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DeltaPath: A Scalable Version of PCCE
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